Accurate Survival Prediction
准确的生存预测
基本信息
- 批准号:523139-2018
- 负责人:
- 金额:$ 1.81万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many tasks involves estimating the time until an event: eg, doctors often need to predict the time until a patient**will die (or until she has a relapse, or until she recovers); retail companies want to predict the time until a**customer will leave ("customer churn"), or until an employee will resign. The field of survival analysis has**produced a great many tools for analyzing this data, but most generate a score that can be used to rank patients**rather than an explicit prediction of survival time.**In previous research, we've developed a method called Patient-Specific Survival Prediction (PSSP), which we**use to predict the probability of survival at any desired time of interest, as well as compute the expected**survival time. Further, we have developed metrics to evaluate the accuracy of survival analysis methods (a**challenge of survival data is that frequently we know only a lower-bound of an instance's survival time, but not**the exact survival time, making evaluation difficult).**The Royal Bank of Canada is excited to apply PSSP (and other survival analysis methods) to the area of credit**risk. Specifically, RBC is interested in applying the results of this project to its installment loan and auto**finance products in the effort of predicting at what time an individual is likely to default on a loan. Predicting**when a client will default or pre-pay the loan are paramount in calculating the viability of underwriting the**loan.**The goals of the proposed project are to explore how to optimize accuracy of predicted survival time, and to**explore the use of ensemble models to improve upon individual survival analysis methods, within the specific**domain of credit risk.
许多任务涉及估计事件发生之前的时间:例如,医生经常需要预测患者**死亡之前的时间(或者直到她病情复发,或者直到她康复);零售公司希望预测客户离开(“客户流失”)或员工辞职之前的时间。生存分析领域**产生了大量用于分析这些数据的工具,但大多数工具生成的分数可用于对患者进行排名**,而不是明确预测生存时间。**在之前的研究中,我们开发了一种称为患者特异性生存预测(PSSP)的方法,我们**用它来预测任何感兴趣的所需时间的生存概率,并计算预期的**生存时间。此外,我们还开发了评估生存分析方法准确性的指标(生存数据的一个挑战是,我们通常只知道实例生存时间的下限,而不知道**确切的生存时间,这使得评估变得困难)。**加拿大皇家银行很高兴将 PSSP(和其他生存分析方法)应用于信用**风险领域。具体来说,加拿大皇家银行有兴趣将该项目的结果应用于其分期贷款和汽车金融产品,以预测个人可能在何时拖欠贷款。预测**客户何时违约或预付贷款对于计算承销**贷款的可行性至关重要。**拟议项目的目标是探索如何优化预测生存时间的准确性,并**探索在信用风险的特定**领域内使用集成模型来改进个体生存分析方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greiner, Russell其他文献
CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification.
- DOI:
10.1021/acs.analchem.1c01465 - 发表时间:
2021-08-31 - 期刊:
- 影响因子:7.4
- 作者:
Wang, Fei;Liigand, Jaanus;Tian, Siyang;Arndt, David;Greiner, Russell;Wishart, David S. - 通讯作者:
Wishart, David S.
Multi-Source Domain Adaptation Techniques for Mitigating Batch Effects: A Comparative Study.
用于减轻批次效应的多源域适应技术:比较研究。
- DOI:
10.3389/fninf.2022.805117 - 发表时间:
2022 - 期刊:
- 影响因子:3.5
- 作者:
Panda, Rohan;Kalmady, Sunil Vasu;Greiner, Russell - 通讯作者:
Greiner, Russell
The challenge of predicting blood glucose concentration changes in patients with type I diabetes
- DOI:
10.1177/1460458220977584 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:3
- 作者:
Borle, Neil C.;Ryan, Edmond A.;Greiner, Russell - 通讯作者:
Greiner, Russell
SIMLR: Machine Learning inside the SIR Model for COVID-19 Forecasting
- DOI:
10.3390/forecast4010005 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:3
- 作者:
Vega, Roberto;Flores, Leonardo;Greiner, Russell - 通讯作者:
Greiner, Russell
Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study.
- DOI:
10.3389/fpsyt.2022.923938 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Paul, Animesh Kumar;Bose, Anushree;Kalmady, Sunil Vasu;Shivakumar, Venkataram;Sreeraj, Vanteemar S. S.;Parlikar, Rujuta;Narayanaswamy, Janardhanan C. C.;Dursun, Serdar M. M.;Greenshaw, Andrew J. J.;Greiner, Russell;Venkatasubramanian, Ganesan - 通讯作者:
Venkatasubramanian, Ganesan
Greiner, Russell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greiner, Russell', 18)}}的其他基金
Using Machine Learning for Effective Personalized Treatments
使用机器学习进行有效的个性化治疗
- 批准号:
RGPIN-2019-04927 - 财政年份:2022
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning for Effective Personalized Treatments
使用机器学习进行有效的个性化治疗
- 批准号:
RGPIN-2019-04927 - 财政年份:2021
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning for Effective Personalized Treatments
使用机器学习进行有效的个性化治疗
- 批准号:
RGPIN-2019-04927 - 财政年份:2020
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning for Effective Personalized Treatments
使用机器学习进行有效的个性化治疗
- 批准号:
RGPIN-2019-04927 - 财政年份:2019
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning for Personalized Medicine
使用机器学习进行个性化医疗
- 批准号:
RGPIN-2014-03854 - 财政年份:2018
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning for Personalized Medicine
使用机器学习进行个性化医疗
- 批准号:
RGPIN-2014-03854 - 财政年份:2017
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning for Personalized Medicine
使用机器学习进行个性化医疗
- 批准号:
RGPIN-2014-03854 - 财政年份:2016
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning for Personalized Medicine
使用机器学习进行个性化医疗
- 批准号:
462330-2014 - 财政年份:2016
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Using Machine Learning for Personalized Medicine
使用机器学习进行个性化医疗
- 批准号:
462330-2014 - 财政年份:2015
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Using Machine Learning for Personalized Medicine
使用机器学习进行个性化医疗
- 批准号:
RGPIN-2014-03854 - 财政年份:2015
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
SERVICES TO EXTEND METHODS FOR RISK PREDICTION WITH A CONTINUOUS TIME MODEL FOR SURVIVAL UNDER COMPETING RISKS
通过连续时间模型扩展风险预测方法的服务,以实现竞争风险下的生存
- 批准号:
10974264 - 财政年份:2023
- 资助金额:
$ 1.81万 - 项目类别:
Improving Mortality Prediction in People with Cardiovascular Disease: A Random Survival Forests Approach Integrating Frailty Assessment
改善心血管疾病患者的死亡率预测:结合衰弱评估的随机生存森林方法
- 批准号:
495596 - 财政年份:2023
- 资助金额:
$ 1.81万 - 项目类别:
Machine Learning Approach for Personalized Prediction of Renal Graft Survival
用于肾移植物存活个性化预测的机器学习方法
- 批准号:
23K17002 - 财政年份:2023
- 资助金额:
$ 1.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPAS-2020-00089 - 财政年份:2022
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
- 批准号:
10644030 - 财政年份:2022
- 资助金额:
$ 1.81万 - 项目类别:
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
- 批准号:
10503417 - 财政年份:2022
- 资助金额:
$ 1.81万 - 项目类别:
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPIN-2020-07110 - 财政年份:2022
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPIN-2020-07110 - 财政年份:2021
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2021
- 资助金额:
$ 1.81万 - 项目类别:
Discovery Grants Program - Individual
Recruitment suitability for Japanese tree species: a future prediction with seed dispersal, survival and germination traits
日本树种的招募适宜性:对种子传播、存活和发芽特性的未来预测
- 批准号:
21K05687 - 财政年份:2021
- 资助金额:
$ 1.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)