Development of Machine Learning Based Predictive Modeling for Forest Biomass Estimation**

基于机器学习的森林生物量估算预测模型的开发**

基本信息

  • 批准号:
    537549-2018
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The objective of this research project is to develop efficient predictive modeling methods for forest biomass estimation applications as part of the industrial partner's (Hegyi Geomatics International Inc.) ongoing projects that deal with the quantification of forest biomass using satellite images and data analytics tools. Hegyi Geomatics develops decision support tools for natural resources management by integrating field observation, ecosystem models, Geographic Information System (GIS) and remote sensing. Toward this effort, Hegyi Geomatics is looking to develop a machine learning approach to analyze satellite images and estimate the forest biomass. Efficient predictive modeling approaches can be utilized to correlate band surface reflectance with forest biomass. To take full advantage of data-driven approaches, the specific problem investigated in this work is to develop a methodology to automatically select the most dominant inputs and to generate parsimonious predictive models using limited data sets for estimating forest biomass. The proposed predictive modeling methods will be developed utilizing advanced machine learning techniques by the research team from the University of Waterloo in close collaboration with the technical experts from the industrial partner. The benefits of the proposed predictive modeling methods include improved prediction accuracy, faster and more cost-effective predictive models, and better interpretations of constructed models. The proposed research effort to develop machine learning based predictive modeling methods for enabling effective and efficient data-driven modeling of complex systems also has significant implications for the GIS solutions and software that Hegyi Geomatics provides. Incorporation of the proposed predictive modeling methods into its data analytics and other decision support tools will help Hegyi Geomatics to further establish world-leading competitiveness of its services and products. The success of this project will enable the industrial partner to create new source of revenue generation and reach out to new clientele.
该研究项目的目标是为森林生物量估计应用开发有效的预测建模方法,作为产业合作伙伴(Hegyi Geomatics International Inc.)的一部分。正在进行的利用卫星图像和数据分析工具量化森林生物量的项目。Hegyi Geomatics通过集成野外观测、生态系统模型、地理信息系统(GIS)和遥感,开发用于自然资源管理的决策支持工具。为此,Hegyi Geomatics正在寻求开发一种机器学习方法来分析卫星图像并估计森林生物量。可以利用有效的预测建模方法将波段表面反射率与森林生物量进行关联。为了充分利用数据驱动的方法,这项工作研究的具体问题是开发一种方法来自动选择最主要的输入,并使用有限的数据集生成简约的预测模型来估计森林生物量。滑铁卢大学的研究小组将与工业合作伙伴的技术专家密切合作,利用先进的机器学习技术开发拟议的预测建模方法。所提出的预测建模方法的好处包括提高了预测精度、更快且更具成本效益的预测模型以及更好地解释所构建的模型。开发基于机器学习的预测建模方法以实现对复杂系统的有效和高效的数据驱动建模的拟议研究工作,对Hegyi Geomatics提供的地理信息系统解决方案和软件也具有重要影响。将建议的预测建模方法整合到其数据分析和其他决策支持工具中,将有助于Hegyi Geomatics进一步建立其服务和产品的世界领先竞争力。该项目的成功将使工业合作伙伴能够创造新的收入来源,并接触到新的客户。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heppler, Glenn其他文献

Heppler, Glenn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heppler, Glenn', 18)}}的其他基金

Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
  • 批准号:
    RGPIN-2017-03866
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
  • 批准号:
    RGPIN-2017-03866
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
  • 批准号:
    RGPIN-2017-03866
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancement and Verification of Input Selection Methods for Predictive Modeling in Life Cycle Management
生命周期管理中预测建模输入选择方法的增强和验证
  • 批准号:
    522090-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Plus Grants Program
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
  • 批准号:
    RGPIN-2017-03866
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
  • 批准号:
    RGPIN-2017-03866
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Input Selection Methods for Predictive Modelling in the Health Monitoring of Gas Turbine Engines
燃气轮机健康监测预测建模输入选择方法的开发
  • 批准号:
    513460-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Adaptive interpolation modeling techniques towards reduced numerical CFD grid computation
用于减少数值 CFD 网格计算的自适应插值建模技术
  • 批准号:
    499382-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Plus Grants Program
Development of intelligent interpolation models based on limited and expensive CFD and FEA simulations for real-time applications
基于有限且昂贵的 CFD 和 FEA 仿真开发智能插值模型,用于实时应用
  • 批准号:
    478367-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Dynamics and control of micropolar material structures with embedded angular momentum
嵌入角动量的微极性材料结构的动力学与控制
  • 批准号:
    6208-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
  • 批准号:
    10083188
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Small Business Research Initiative
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
  • 批准号:
    23K09302
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
  • 批准号:
    23H02064
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
  • 批准号:
    2311632
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
  • 批准号:
    23K13326
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
  • 批准号:
    22KJ2450
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了