Development of Input Selection Methods for Predictive Modelling in the Health Monitoring of Gas Turbine Engines
燃气轮机健康监测预测建模输入选择方法的开发
基本信息
- 批准号:513460-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research project is to develop efficient input selection methods intended for predictivemodelling applications as part of industrial partner's (TECSIS Corporation) ongoing projects that deal with thequantification of the health monitoring of a gas turbine (GT) engine using data analytics tools. TECSISprovides product development and research and development services, and has an active research portfolio inPrognostics and Health Management (PHM) system development. Going forward as part of their continuousproduct advancements, TECSIS needs a methodology to automatically select the most dominant inputs thathave significant influence on outputs like exhaust gas temperature (EGT) and power which are major indicatorsfor health monitoring of gas turbines. The proposed input selection methods will be developed utilizingadvanced machine learning techniques by the research team from the University of Waterloo in closecollaboration with the technical experts and engineers from the industrial partner. The benefits of the proposedinput selection methods include improved prediction accuracy, faster and more cost-effective predictivemodels, better interpretations of constructed models, and cost savings on the next round of data collection dueto fewer inputs involved. These methods also have significant implications for developing predictive modeling,classification, and clustering applications in other mechanical, electrical, and software systems that TECSISworks in. Incorporation of the proposed input selection methods into its predictive modeling and other patternrecognition tools will help TECSIS to expand its applications areas. The success of this project will enable theindustrial partner to create new source of revenue generation and reach out to new clientele.
该研究项目的目标是开发高效的输入选择方法,用于预测建模应用程序,作为工业合作伙伴(TECSIS Corporation)正在进行的项目的一部分,这些项目使用数据分析工具对燃气轮机(GT)发动机的健康监测进行量化。TECSIS提供产品开发和研发服务,并在预测和健康管理(PHM)系统开发方面拥有积极的研究组合。展望未来,作为其持续产品改进的一部分,TECSIS需要一种方法来自动选择对排气温度(EGT)和功率等输出有重大影响的最主要输入,这些输出是燃气轮机健康监测的主要指标。滑铁卢大学的研究小组将与工业合作伙伴的技术专家和工程师密切合作,利用先进的机器学习技术开发拟议的投入选择方法。建议的输入选择方法的好处包括提高预测精度、更快和更具成本效益的预测模型、更好地解释所构建的模型,以及由于涉及的输入更少而节省了下一轮数据收集的成本。这些方法对于在TECSIS工作的其他机械、电气和软件系统中开发预测建模、分类和集群应用程序也具有重要意义。将拟议的输入选择方法纳入其预测建模和其他模式识别工具,将有助于TECSIS扩大其应用领域。该项目的成功将使工业合作伙伴能够创造新的收入来源,并接触到新的客户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heppler, Glenn其他文献
Heppler, Glenn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heppler, Glenn', 18)}}的其他基金
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
- 批准号:
RGPIN-2017-03866 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
- 批准号:
RGPIN-2017-03866 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
- 批准号:
RGPIN-2017-03866 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Development of Machine Learning Based Predictive Modeling for Forest Biomass Estimation**
基于机器学习的森林生物量估算预测模型的开发**
- 批准号:
537549-2018 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Enhancement and Verification of Input Selection Methods for Predictive Modeling in Life Cycle Management
生命周期管理中预测建模输入选择方法的增强和验证
- 批准号:
522090-2018 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Engage Plus Grants Program
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
- 批准号:
RGPIN-2017-03866 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Dynamics and Control of Micropolar Material Structures with Embedded Angular Momentum
嵌入角动量的微极性材料结构的动力学与控制
- 批准号:
RGPIN-2017-03866 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive interpolation modeling techniques towards reduced numerical CFD grid computation
用于减少数值 CFD 网格计算的自适应插值建模技术
- 批准号:
499382-2016 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Engage Plus Grants Program
Development of intelligent interpolation models based on limited and expensive CFD and FEA simulations for real-time applications
基于有限且昂贵的 CFD 和 FEA 仿真开发智能插值模型,用于实时应用
- 批准号:
478367-2015 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Dynamics and control of micropolar material structures with embedded angular momentum
嵌入角动量的微极性材料结构的动力学与控制
- 批准号:
6208-2011 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Developmental relations between emotion input and emotion perception
情绪输入与情绪感知之间的发展关系
- 批准号:
2333886 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
SBIR Phase I: Simultaneous Transmit-Receive and Full-Duplex Millimeter-Wave Massive Multiple-Input and Multiple-Output (MIMO) Systems
SBIR 第一阶段:同时发送-接收和全双工毫米波大规模多输入多输出 (MIMO) 系统
- 批准号:
2322297 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CAREER: Inclusive, Private Mobile Input and Interaction Using Lip Reading
职业:使用唇读进行包容性、私密的移动输入和交互
- 批准号:
2239633 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
- 批准号:
BB/Y513672/1 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Training Grant
Category learning with(out) language: congenital deafness as a critical test for the role of language input in early category learning
有(无)语言的类别学习:先天性耳聋是语言输入在早期类别学习中的作用的关键测试
- 批准号:
ES/W009226/1 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Producing more with less adapting high-yielding barley varieties to low-input agriculture
让高产大麦品种适应低投入农业,少花钱多产
- 批准号:
2869836 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
SBIR Phase I: Multiple input multiple output (MIMO) radar processing module for significantly enhanced detection of severe weather and disaster management
SBIR 第一阶段:多输入多输出 (MIMO) 雷达处理模块,可显着增强对恶劣天气和灾害管理的检测
- 批准号:
2313223 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Ambiguities in children's language input and linguistic/communicative disambiguating cues: a comparison between Japanese and French
儿童语言输入中的歧义和语言/交际消歧线索:日语和法语的比较
- 批准号:
23K18644 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Multimodal analysis using pen input data and gaze data in science and mathematics e-learning
在科学和数学电子学习中使用笔输入数据和注视数据进行多模态分析
- 批准号:
23K17589 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Harnessing and integrating disease suppressive microbes and synthetic soils for sustainable, low input horticulture
利用和整合抑制疾病的微生物和合成土壤以实现可持续、低投入的园艺
- 批准号:
BB/T010789/2 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant














{{item.name}}会员




