Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology

数学生物学中的非局部和各向异性偏微分方程

基本信息

  • 批准号:
    RGPIN-2017-04158
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In this research I consider nonlocal and anisotropic differential equations that arise as mathematical models for biological processes. These models are generalizations of well known reaction-advection-diffusion models and a rich qualitative theory is waiting to be explored. I expect to find new forms of pattern formation that include singular solutions, global patterns and accelerated invasion fronts. I will use these versatile models for several specific biological applications. For example, I use the models to analyse how wolves use linear features in the forest environment to change their hunting strategies, and how we can understand the impact of this change on wolf-ungulate dynamics. Another example involves sea turtles, who use an internal compass to navigate long distances across the ocean to find their breeding beaches. Mathematical models help to understand their navigational abilities by quantifying directional cues (magnetic, chemotactic), and they are used to develop protection strategies. The nonlocal models also apply to forest fire spread, and they are used to estimate the probability that a fire breaches an obstacle to enter human settlements. Finally, another application of these class of models lies in cancer research. While cancer research is not directly part of this NSERC grant, results and methods developed here will impact cancer modelling and provide a framework to develop better treatment strategies. Nonlocal and anisotropic continuum models for spatial movement obtain their beauty from a rich mathematical theory and wide reaching applications.
在这项研究中,我认为非局部和各向异性微分方程,出现作为数学模型的生物过程。这些模型是著名的反应-对流-扩散模型的推广,有丰富的定性理论有待于探索。我希望找到新的模式形成形式,包括单一的解决方案,全球模式和加速入侵前线。我将使用这些多功能模型用于几个特定的生物应用。例如,我使用这些模型来分析狼如何使用森林环境中的线性特征来改变它们的狩猎策略,以及我们如何理解这种变化对有蹄类动物动态的影响。另一个例子涉及海龟,它们使用内部指南针在海洋中进行长距离导航,以找到它们的繁殖海滩。数学模型通过量化方向线索(磁性,趋化性)来帮助理解它们的导航能力,并用于制定保护策略。非局部模型也适用于森林火灾蔓延,它们被用来估计火灾突破障碍进入人类住区的概率。最后,这类模型的另一个应用在于癌症研究。虽然癌症研究不是NSERC资助的直接部分,但这里开发的结果和方法将影响癌症建模,并为开发更好的治疗策略提供框架。空间运动的非局部和各向异性连续模型从丰富的数学理论和广泛的应用中获得了它们的美丽。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hillen, Thomas其他文献

The "edge effect" phenomenon: deriving population abundance patterns from individual animal movement decisions
  • DOI:
    10.1007/s12080-015-0283-7
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Potts, Jonathan R.;Hillen, Thomas;Lewis, Mark A.
  • 通讯作者:
    Lewis, Mark A.
A stochastic model for cancer metastasis: branching stochastic process with settlement
From cell population models to tumor control probability: Including cell cycle effects
  • DOI:
    10.3109/02841861003631487
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hillen, Thomas;De Vries, Gerda;Finlay, Chris
  • 通讯作者:
    Finlay, Chris
A computational model for the cancer field effect.
  • DOI:
    10.3389/frai.2023.1060879
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Deutscher, Karl;Hillen, Thomas;Newby, Jay
  • 通讯作者:
    Newby, Jay
Identification and Management of Substance Misuse in Patients Referred for Psychodynamic Psychotherapy: A Service Evaluation Project
  • DOI:
    10.1192/bjo.2022.400
  • 发表时间:
    2022-06-20
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Lusby, Joshua;Chu, Kenny;Sathanandan, Shivanthi;Hillen, Thomas
  • 通讯作者:
    Hillen, Thomas

Hillen, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hillen, Thomas', 18)}}的其他基金

Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Energy metabolism modelling with sensitivity to activity thermogenesis tracking data
对活动生热跟踪数据敏感的能量代谢建模
  • 批准号:
    508657-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Engage Grants Program
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Spatial Spread in Anisotropic Landscapes
各向异性景观空间扩散的数学建模
  • 批准号:
    250302-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Standard Grant
CAREER: Dynamics of Binary Anisotropic Magnetic Colloids
职业:二元各向异性磁胶体动力学
  • 批准号:
    2338064
  • 财政年份:
    2024
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Continuing Grant
Development of a 3D-printed anisotropic heart-on-a-chip for drug screening applications
开发用于药物筛选应用的 3D 打印各向异性芯片心脏
  • 批准号:
    EP/X02721X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Fellowship
Cloaking Anisotropic Capillary Interactions Through Tunable Nanoscale Surface Topography
通过可调纳米级表面形貌隐藏各向异性毛细管相互作用
  • 批准号:
    2232579
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Study of Anisotropic Dust Interactions in the PK-4 Experiment
合作研究:PK-4 实验中各向异性尘埃相互作用的研究
  • 批准号:
    2308743
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Continuing Grant
Diagnosis of anisotropic and non-equilibrium energy distribution by collisional radiative process of volumetric recombining plasma
体积重组等离子体碰撞辐射过程诊断各向异性和非平衡能量分布
  • 批准号:
    23H01148
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Anisotropic single-particle transducers
各向异性单粒子换能器
  • 批准号:
    DE230100079
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Early Career Researcher Award
Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Chemical synthesis and exploration of concerted optical properties of anisotropic three-dimensional quantum dot superlattices
各向异性三维量子点超晶格的化学合成及协同光学性质探索
  • 批准号:
    23H01802
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a 3D-printed anisotropic heart-on-a-chip for drug screening applications
开发用于药物筛选应用的 3D 打印各向异性芯片心脏
  • 批准号:
    EP/X02721X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了