Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
基本信息
- 批准号:SAPIN-2018-00024
- 负责人:
- 金额:$ 6.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Subatomic Physics Envelope - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When temperature increases, it tends to break up matter into more elemental particles as the forces binding them get overwhelmed by thermal energy. For instance, while liquid water is made of collection of loosely bound water molecules, steam is a gas of unbound water molecules. Likewise, when atomic nucleus is heated, the nucleus undergoes a phase transition and dissolves into more elemental quarks and gluons. This occurs at around two trillion kelvin temperature. The resulting system called Quark-Gluon Plasma, or QGP, is the hottest and the densest matter ever observed in nature and it is the most "perfect fluid'' with the lowest specific viscosity ever observed.******In the past two decades, high energy nuclear physics community has been focusing on the study of this primordial matter by experimentally creating it in relativistic heavy ion collisions and understanding its properties through in-depth theoretical investigations. With two relativistic heavy ion colliders in operation in the USA (the Relativistic Heavy Ion Collider) and Europe (the Large Hadron Collider), experiments on QGP has moved on well beyond the discovery phase to the precision measurement phase. Theoretical analysis of this strongly interacting QCD (Quantum Chromodynamics) many-body system is an important testing ground for our understanding of strong nuclear interaction.******In the past two decades, I have made a concerted effort to theoretically understand this primordial matter. QGP created in relativistic heavy ion collisions evolves through several stages. Although QGP phase is the most important stage, understanding the whole picture is crucial in extracting the properties of QGP from experimental data. My group has been successfully conducting such a comprehensive study of QGP for many years using wide range of theoretical tools from quantum field theory to hydrodynamic simulations.******In this grant proposal, I propose to add important new physics elements to our successful program of analyzing and predicting QGP phenomenology using our hydrodynamics and jet-QGP interaction simulation tools (a "jet" here refers to a high-energy quark or gluon). First, the initial state calculation will be critically improved by properly taking into account the beam-direction dynamics of gluons. Second, we will investigate the surprising phenomenon that even smaller systems created by proton-nucleus collisions exhibit evidence of QGP fluid, in particular focusing on the modification of the jet spectra fully taking into account the finite size effect. Third, we will carry out studies on the non-equilibrium corrections to the hadronic and electromagnetic signals. Lastly, we will use available Bayesian statistics tools to determine the properties of QGP such as transport coefficients in a systematic way. Through such a comprehensive and thorough study, we will be able to characterize QGP in a precise and decisive manner.**************
When temperature increases, it tends to break up matter into more elemental particles as the forces binding them get overwhelmed by thermal energy. For instance, while liquid water is made of collection of loosely bound water molecules, steam is a gas of unbound water molecules. Likewise, when atomic nucleus is heated, the nucleus undergoes a phase transition and dissolves into more elemental quarks and gluons. This occurs at around two trillion kelvin temperature. The resulting system called Quark-Gluon Plasma, or QGP, is the hottest and the densest matter ever observed in nature and it is the most "perfect fluid'' with the lowest specific viscosity ever observed.******In the past two decades, high energy nuclear physics community has been focusing on the study of this primordial matter by experimentally creating it in relativistic heavy ion collisions and understanding its properties through in-depth theoretical investigations. With two relativistic heavy ion colliders in operation in the USA (the Relativistic Heavy Ion Collider) and Europe (the Large Hadron Collider), experiments on QGP has moved on well beyond the discovery phase to the precision measurement phase. Theoretical analysis of this strongly interacting QCD (Quantum Chromodynamics) many-body system is an important testing ground for our understanding of strong nuclear interaction.******In the past two decades, I have made a concerted effort to theoretically understand this primordial matter. QGP created in relativistic heavy ion collisions evolves through several stages. Although QGP phase is the most important stage, understanding the whole picture is crucial in extracting the properties of QGP from experimental data. My group has been successfully conducting such a comprehensive study of QGP for many years using wide range of theoretical tools from quantum field theory to hydrodynamic simulations.******In this grant proposal, I propose to add important new physics elements to our successful program of analyzing and predicting QGP phenomenology using our hydrodynamics and jet-QGP interaction simulation tools (a "jet" here refers to a high-energy quark or gluon). First, the initial state calculation will be critically improved by properly taking into account the beam-direction dynamics of gluons. Second, we will investigate the surprising phenomenon that even smaller systems created by proton-nucleus collisions exhibit evidence of QGP fluid, in particular focusing on the modification of the jet spectra fully taking into account the finite size effect. Third, we will carry out studies on the non-equilibrium corrections to the hadronic and electromagnetic signals. Lastly, we will use available Bayesian statistics tools to determine the properties of QGP such as transport coefficients in a systematic way. Through such a comprehensive and thorough study, we will be able to characterize QGP in a precise and decisive manner.**************
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeon, Sangyong其他文献
Event-by-Event Anisotropic Flow in Heavy-ion Collisions from Combined Yang-Mills and Viscous Fluid Dynamics
- DOI:
10.1103/physrevlett.110.012302 - 发表时间:
2013-01-02 - 期刊:
- 影响因子:8.6
- 作者:
Gale, Charles;Jeon, Sangyong;Venugopalan, Raju - 通讯作者:
Venugopalan, Raju
Prediction of the Change Points in Stock Markets Using DAE-LSTM
- DOI:
10.3390/su132111822 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:3.9
- 作者:
Yoo, Sanghyuk;Jeon, Sangyong;Oh, Kyongjoo - 通讯作者:
Oh, Kyongjoo
Membership herding and network stability in the open source community: The Ising perspective
- DOI:
10.1287/mnsc.1060.0623 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:5.4
- 作者:
Oh, Wonseok;Jeon, Sangyong - 通讯作者:
Jeon, Sangyong
HYDRODYNAMIC MODELING OF HEAVY-ION COLLISIONS
- DOI:
10.1142/s0217751x13400113 - 发表时间:
2013-04-30 - 期刊:
- 影响因子:1.6
- 作者:
Gale, Charles;Jeon, Sangyong;Schenke, Bjoern - 通讯作者:
Schenke, Bjoern
Jeon, Sangyong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeon, Sangyong', 18)}}的其他基金
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2022
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2021
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2020
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2019
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Comprehensive Investigation of Ultra-Relativistic Heavy Ion Collisions at RHIC and the LHC
RHIC 和 LHC 超相对论重离子碰撞的综合研究
- 批准号:
238527-2013 - 财政年份:2017
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Comprehensive Investigation of Ultra-Relativistic Heavy Ion Collisions at RHIC and the LHC
RHIC 和 LHC 超相对论重离子碰撞的综合研究
- 批准号:
238527-2013 - 财政年份:2015
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Comprehensive Investigation of Ultra-Relativistic Heavy Ion Collisions at RHIC and the LHC
RHIC 和 LHC 超相对论重离子碰撞的综合研究
- 批准号:
238527-2013 - 财政年份:2014
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Comprehensive Investigation of Ultra-Relativistic Heavy Ion Collisions at RHIC and the LHC
RHIC 和 LHC 超相对论重离子碰撞的综合研究
- 批准号:
238527-2013 - 财政年份:2013
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Theoretical investigation of quark gluon plasma in heavy ion collisions
重离子碰撞中夸克胶子等离子体的理论研究
- 批准号:
238527-2008 - 财政年份:2012
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Theoretical investigation of quark gluon plasma in heavy ion collisions
重离子碰撞中夸克胶子等离子体的理论研究
- 批准号:
238527-2008 - 财政年份:2011
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
相似国自然基金
HOT型高增益带宽积碲镉汞中波红外雪崩探测器研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于两级表面等离子共振增强结构的高灵敏度拉曼散射成像物理机制及制作工艺研究
- 批准号:61007018
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
不同地热区高温丝状菌席种群组成和群落结构的研究
- 批准号:30360004
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Hot, dense matter creation via ultra-intense laser interaction with novel, structured targets.
通过超强激光与新颖的结构化目标相互作用,产生热、致密的物质。
- 批准号:
2750491 - 财政年份:2022
- 资助金额:
$ 6.19万 - 项目类别:
Studentship
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2022
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Theories of hot and dense matter: from hydrodynamics to holography
热致密物质理论:从流体动力学到全息术
- 批准号:
SAPIN-2020-00050 - 财政年份:2022
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Theories of hot and dense matter: from hydrodynamics to holography
热致密物质理论:从流体动力学到全息术
- 批准号:
SAPIN-2020-00050 - 财政年份:2021
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2021
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Theories of hot and dense matter: from hydrodynamics to holography
热致密物质理论:从流体动力学到全息术
- 批准号:
SAPIN-2020-00050 - 财政年份:2020
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2020
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual
Study of the Dynamics and Properties of Hot and Dense Quark and Gluon Matter
热密夸克和胶子物质的动力学和性质研究
- 批准号:
1913138 - 财政年份:2019
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
Integrated study of photon production in hot and dense quark matter
热密夸克物质中光子产生的综合研究
- 批准号:
19K14722 - 财政年份:2019
- 资助金额:
$ 6.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of hot and dense nuclear matter in relativistic heavy ion collisions
相对论性重离子碰撞中热致密核物质的研究
- 批准号:
SAPIN-2018-00024 - 财政年份:2019
- 资助金额:
$ 6.19万 - 项目类别:
Subatomic Physics Envelope - Individual