Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments

用于细胞微环境高通量表征的微工程平台

基本信息

  • 批准号:
    RGPIN-2014-04010
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Osteoarthritis is the most common form of arthritis, affecting 1 out of every 10 people in Canada. The total cost of arthritis is estimated at $33 billion dollars per year. Similarly, millions of patients in Canada undergo procedures to correct bone deformities each year. Tissue engineering seeks to provide an alternate therapeutic approach using stem cells. Mesenchymal stem cells derived from bone marrow retain a multi-lineage potential to differentiate to fat cells, heart muscle cells, bone cells, and cartilage cells. The physical properties of local microenvironments will play an important role in the differentiation of mesenchymal stem cell. A number of studies have been aimed at combining stem cells with biomaterials for cartilage and bone regeneration, but to date, no study has systematically examined the combinatorial factors to control the physical properties for stem cell differentiation in a 3-D microenvironment. In the 3-D cellular microenvironment, cells interact with their surroundings by processing various chemical and physical signals. To control cellular microenvironments for stem cells, hydrogels have attracted great interests due to high water content, biocompatibility, and mechanical properties resembling natural tissues. However, various parameters of hydrogels are associated with controlling stem cell fate; the optimization of the parameters is essential. Therefore, a high-throughput screening technology to test many parameters in one experiment will facilitate the systematic examination and the optimization of cellular microenvironments generated by hydrogels.**High-throughput screening technology is a method of using robotic liquid handling devices to quickly fabricate microarrays of chemical, genetic, and pharmacological materials and conduct tests in a high-throughput manner. In this research program, we adopt this technology to develop a hydrogel microarray with hundreds of micrometer-sized functional hydrogel spots (diameter: ~500µm; thickness: ~100µm) printed on a standard microscope slide. We will use alginate hydrogels that can be polymerized by ultra violet light. We will test 27 combinations of alginate hydrogels with three different parameters and three different conditions of each parameter that control physical properties. We will characterize the physical properties, such as microstructure, stiffness, and adhesion, using advanced characterization techniques such as atomic force microscopy and scanning electron microscopy. The developed alginate microarray will be used to optimize the effects of physical properties on mesenchymal stem cell differentiation.**Although the molecular mechanisms associated with the biological responses have yet to be clarified, such technology may be widely applicable in cell-microenvironment research. Also, the physical properties identified in this program could be used as design parameters for engineering new biomaterials and microenvironments for tissue regeneration. In this program, we propose to engineer and apply high-throughput screening technology for the identification of cell-microenvironment interactions that increase stem cell differentiation into the bone and cartilage. The results of this research will have high potential to positively affect the large number of patients that undergo procedures to repair bone and cartilage each year. Thus, the orthopedic community in Canada would benefit from the new treatment techniques composed of osteogenic and chondrogenic biomaterials that not only support, but also induce tissue formation. The developed platforms will also be applicable to numerous tissue regeneration applications, such as cardiovascular and nerve tissues and beneficial for biomaterials and tissue engineering research in Canada.
骨关节炎是最常见的关节炎形式,加拿大每 10 人中就有 1 人患有骨关节炎。关节炎造成的总费用估计为每年 330 亿美元。同样,加拿大每年有数百万患者接受矫正骨骼畸形的手术。组织工程旨在提供一种使用干细胞的替代治疗方法。源自骨髓的间充质干细胞保留了分化为脂肪细胞、心肌细胞、骨细胞和软骨细胞的多谱系潜力。局部微环境的物理特性将在间充质干细胞的分化中发挥重要作用。许多研究旨在将干细胞与生物材料结合起来用于软骨和骨再生,但迄今为止,还没有研究系统地检查组合因素来控制 3D 微环境中干细胞分化的物理特性。在 3D 细胞微环境中,细胞通过处理各种化学和物理信号与周围环境相互作用。为了控制干细胞的细胞微环境,水凝胶由于高含水量、生物相容性和类似于天然组织的机械性能而引起了人们的极大兴趣。然而,水凝胶的各种参数与控制干细胞的命运有关。参数的优化至关重要。因此,一种在一次实验中测试多个参数的高通量筛选技术将有助于对水凝胶产生的细胞微环境进行系统检查和优化。**高通量筛选技术是一种利用机器人液体处理装置快速制造化学、遗传和药理材料微阵列并以高通量方式进行测试的方法。在本研究项目中,我们采用该技术开发了一种水凝胶微阵列,在标准显微镜载玻片上印刷有数百个微米大小的功能性水凝胶点(直径:~500μm;厚度:~100μm)。我们将使用可通过紫外线聚合的藻酸盐水凝胶。我们将测试 27 种海藻酸盐水凝胶的组合,其具有三个不同的参数以及控制物理性质的每个参数的三个不同条件。我们将使用先进的表征技术(例如原子力显微镜和扫描电子显微镜)来表征物理特性,例如微观结构、刚度和粘附力。开发的藻酸盐微阵列将用于优化物理特性对间充质干细胞分化的影响。**尽管与生物反应相关的分子机制尚未阐明,但此类技术可能广泛应用于细胞微环境研究。此外,该程序中确定的物理特性可用作设计新生物材料和组织再生微环境的设计参数。在该计划中,我们建议设计并应用高通量筛选技术来识别细胞-微环境相互作用,从而增加干细胞分化为骨和软骨的能力。这项研究的结果将很有可能对每年接受骨和软骨修复手术的大量患者产生积极影响。因此,加拿大的骨科界将受益于由成骨和软骨形成生物材料组成的新治疗技术,这些技术不仅支持而且诱导组织形成。开发的平台还将适用于多种组织再生应用,例如心血管和神经组织,并有利于加拿大的生物材料和组织工程研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kim, Keekyoung其他文献

A Novel, Well-Resolved Direct Laser Bioprinting System for Rapid Cell Encapsulation and Microwell Fabrication
  • DOI:
    10.1002/adhm.201701249
  • 发表时间:
    2018-05-09
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Wang, Zongjie;Jin, Xian;Kim, Keekyoung
  • 通讯作者:
    Kim, Keekyoung
Microfluidic fabrication of cell adhesive chitosan microtubes.
  • DOI:
    10.1007/s10544-013-9746-z
  • 发表时间:
    2013-06
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Oh, Jonghyun;Kim, Keekyoung;Won, Sung Wook;Cha, Chaenyung;Gaharwar, Akhilesh K.;Selimovic, Seila;Bae, Hojae;Lee, Kwang Ho;Lee, Dong Hwan;Lee, Sang-Hoon;Khademhosseini, Ali
  • 通讯作者:
    Khademhosseini, Ali
MULTISCALE STRESS-STRAIN CHARACTERIZATION OF ONION OUTER EPIDERMAL TISSUE IN WET AND DRY STATES
  • DOI:
    10.3732/ajb.1400273
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Kim, Keekyoung;Yi, Hojae;Puri, Virendra M.
  • 通讯作者:
    Puri, Virendra M.
Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper
  • DOI:
    10.1007/s10544-008-9248-6
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Kim, Keekyoung;Liu, Xinyu;Sun, Yu
  • 通讯作者:
    Sun, Yu
Nanonewton Force Sensing and Control in Microrobotic Cell Manipulation

Kim, Keekyoung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kim, Keekyoung', 18)}}的其他基金

Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid 3D printing systems for soft robotics
用于软体机器人的混合 3D 打印系统
  • 批准号:
    571344-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Antimicrobial copper nanocomposite coating for protecting touch surfaces from COVID-19
用于保护触摸表面免受 COVID-19 侵害的抗菌铜纳米复合涂层
  • 批准号:
    554480-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of reliable building plate for liquid crystal display-based stereolithography 3D printing system
开发用于基于液晶显示器的立体光刻3D打印系统的可靠构建板
  • 批准号:
    508055-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Plus Grants Program
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic Force Microscopy System for Biomedical, Materials, and Environmental Research
用于生物医学、材料和环境研究的原子力显微镜系统
  • 批准号:
    RTI-2017-00308
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Tools and Instruments

相似海外基金

Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10836095
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Develop accurate high-coverage and high-throughput single-cell Duplex-seq chemistry and multi-omics platforms for simultaneous profiling of somatic mutation and the transcriptome in single human cells
开发准确的高覆盖率和高通量单细胞 Duplex-seq 化学和多组学平台,用于同时分析单个人类细胞中的体细胞突变和转录组
  • 批准号:
    10662693
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
High-Throughput Platforms to Study Synthetic Receptors, Natural Molecules, and New Pathway Inhibitors
用于研究合成受体、天然分子和新途径抑制剂的高通量平台
  • 批准号:
    10500898
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Microfluidic platforms for high-throughput generation of stimuli-responsive liposome libraries
用于高通量生成刺激响应脂质体库的微流控平台
  • 批准号:
    2759602
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
High-Throughput Platforms to Study Synthetic Receptors, Natural Molecules, and New Pathway Inhibitors
用于研究合成受体、天然分子和新途径抑制剂的高通量平台
  • 批准号:
    10663364
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10477028
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10301702
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
HIGH THROUGHPUT HOME CAGE PLATFORMS FOR INVESTIGATING NEUROPSYCHIATRIC DISORDERS IN MICE
用于研究小鼠神经精神疾病的高通量家用笼式平台
  • 批准号:
    10325608
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Developing Gene Editing Therapeutics, Biodegradable Polymeric Delivery Vehicles, and High-throughput Platforms for the Treatment of Cystic Fibrosis
开发用于治疗囊性纤维化的基因编辑疗法、可生物降解的聚合物递送载体和高通量平台
  • 批准号:
    10703623
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Development of 3D Alveolar Tissue Models, CRISPR-editing and Microbiota-immune Response Assay Platforms for Deciphering Human Lung Immunity
开发 3D 肺泡组织模型、CRISPR 编辑和微生物免疫反应测定平台,以破译人类肺免疫
  • 批准号:
    10370727
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了