Mechanisms of regulation of ribosome biogenesis and stress resistance in yeast
酵母核糖体生物发生和抗逆性的调控机制
基本信息
- 批准号:RGPIN-2015-06400
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In eukaryotic cells, nearly one third of all newly synthetized proteins enter the endoplasmic reticulum (ER), an organelle containing specialized quality control machinery that ensures the proper folding of the nascent peptides. Failure to fold into their proper conformation leads to loss of protein function and cell death. Thus, cells have evolved signaling pathways that respond to sudden increases in the ER misfolded protein burden (ER stress) caused by various factors such as mutation or environmental insults. In response to ER stress, cells activate the unfolded protein response (UPR). This evolutionarily conserved coping mechanism increases the expression of genes encoding proteins that help restore ER homeostasis by improving protein folding and misfolded protein degradation. The mechanisms of ER stress resolution and UPR have been extensively characterized using the budding yeast Saccharomyces cerevisiae, which allows rapid and extensive genetic manipulations. Yeast also possess a much simpler version of the metazoan UPR, allowing us to decipher basic mechanisms. ***Interestingly, ER stress activates other pathways beyond the UPR. In yeast, prolonged ER stress prevents delivery of properly folded proteins to the cell wall, activating another coping mechanism, the cell wall integrity pathway (CWI). During ER stress, distinct branches of the CWI pathway have two major roles: to increase synthesis of cell wall components to repair defects and to repress ribosome biogenesis. Dividing yeast cells allocate much of their resources to ribosome biogenesis, thus, repression of ribosome production is essential to reallocate resources to stress response pathways such as the CWI and the UPR. However, new data from my laboratory indicate that, while beneficial for acute ER stress, prolonged repression of ribosome biogenesis is detrimental to cells and prevents their re-entry into the growth phase upon resolution of ER stress. My central hypothesis is that increased synthesis of cell wall components during chronic ER stress will attenuate the repression of ribosome biogenesis, allow protein synthesis, and ultimately increase cell survival. The long-term goal of my research program is to understand how the CWI pathway links ER stress tolerance to ribosome biogenesis and cell growth. Specifically, my short-term objectives are to: ***(1) Elucidate how CWI regulates cellular responses to ER stress. ***(2) Define how CWI regulates ribosome biogenesis during prolonged ER stress. ***(3) Identify the genetic networks controlling CWI-dependent tolerance to ER stress.******This program will uncover new, fundamental regulatory mechanisms for adaptation to ER stress that are independent of UPR activation and could later be investigated in other systems. **
在真核细胞中,近三分之一的新合成蛋白质进入内质网(ER),内质网是一种含有专门的质量控制机制的细胞器,可确保新生肽的正确折叠。不能折叠成正确的构象会导致蛋白质功能丧失和细胞死亡。因此,细胞已经进化出信号通路,这些信号通路响应于由各种因素如突变或环境损伤引起的ER错误折叠蛋白质负荷(ER应激)的突然增加。为了响应ER应激,细胞激活未折叠蛋白反应(UPR)。这种进化上保守的应对机制增加了编码蛋白质的基因的表达,这些蛋白质通过改善蛋白质折叠和错误折叠的蛋白质降解来帮助恢复ER稳态。ER应激解决和UPR的机制已经被广泛地表征为使用芽殖酵母酿酒酵母,其允许快速和广泛的遗传操作。酵母也拥有一个简单得多的后生动物UPR版本,使我们能够破译基本机制。有趣的是,ER应激激活了UPR以外的其他途径。在酵母中,长时间的内质网应激阻止了正确折叠的蛋白质向细胞壁的传递,激活了另一种应对机制,即细胞壁完整性途径(CWI)。在ER应激期间,CWI途径的不同分支具有两个主要作用:增加细胞壁组分的合成以修复缺陷和抑制核糖体生物合成。分裂的酵母细胞将它们的大部分资源分配给核糖体生物合成,因此,核糖体产生的抑制对于将资源重新分配给应激反应途径如CWI和UPR是必不可少的。然而,来自我实验室的新数据表明,虽然对急性ER应激有益,但长期抑制核糖体生物合成对细胞有害,并阻止它们在ER应激消退后重新进入生长期。我的中心假设是,在慢性内质网应激过程中,细胞壁成分的合成增加将减弱核糖体生物合成的抑制,允许蛋白质合成,并最终增加细胞存活。我的研究计划的长期目标是了解CWI途径如何将ER应激耐受性与核糖体生物合成和细胞生长联系起来。具体来说,我的短期目标是:*(1)阐明CWI如何调节细胞对ER应激的反应。* (2)定义CWI如何在延长的ER应激期间调节核糖体生物合成。* (3)确定控制CWI依赖性ER应激耐受性的遗传网络。**该计划将揭示新的,基本的调节机制,以适应ER压力是独立的UPR激活,并可以在其他系统中进行研究。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lajoie, Patrick其他文献
A Toolbox for Rapid Quantitative Assessment of Chronological Lifespan and Survival in Saccharomyces cerevisiae
- DOI:
10.1111/tra.12391 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:4.5
- 作者:
Chadwick, Sarah R.;Pananos, Athanasios D.;Lajoie, Patrick - 通讯作者:
Lajoie, Patrick
Hyperactive TORC1 sensitizes yeast cells to endoplasmic reticulum stress by compromising cell wall integrity
- DOI:
10.1002/1873-3468.13463 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:3.5
- 作者:
Ahmed, Khadija;Carter, David E.;Lajoie, Patrick - 通讯作者:
Lajoie, Patrick
Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions
- DOI:
10.1111/tra.12453 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:4.5
- 作者:
Jiang, Yuwei;Di Gregorio, Sonja E.;Lajoie, Patrick - 通讯作者:
Lajoie, Patrick
Changes in BiP availability reveal hypersensitivity to acute endoplasmic reticulum stress in cells expressing mutant huntingtin
- DOI:
10.1242/jcs.087510 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:4
- 作者:
Lajoie, Patrick;Snapp, Erik L. - 通讯作者:
Snapp, Erik L.
Size-dependent secretory protein reflux into the cytosol in association with acute endoplasmic reticulum stress
- DOI:
10.1111/tra.12729 - 发表时间:
2020-04-13 - 期刊:
- 影响因子:4.5
- 作者:
Lajoie, Patrick;Snapp, Erik L. - 通讯作者:
Snapp, Erik L.
Lajoie, Patrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lajoie, Patrick', 18)}}的其他基金
Regulation of endoplasmic reticulum stress resistance in yeast
酵母内质网应激抵抗的调控
- 批准号:
RGPIN-2022-05267 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of regulation of ribosome biogenesis and stress resistance in yeast
酵母核糖体生物发生和抗逆性的调控机制
- 批准号:
RGPIN-2015-06400 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of regulation of ribosome biogenesis and stress resistance in yeast
酵母核糖体生物发生和抗逆性的调控机制
- 批准号:
RGPIN-2015-06400 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of regulation of ribosome biogenesis and stress resistance in yeast
酵母核糖体生物发生和抗逆性的调控机制
- 批准号:
RGPIN-2015-06400 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of regulation of ribosome biogenesis and stress resistance in yeast
酵母核糖体生物发生和抗逆性的调控机制
- 批准号:
RGPIN-2015-06400 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of regulation of ribosome biogenesis and stress resistance in yeast
酵母核糖体生物发生和抗逆性的调控机制
- 批准号:
RGPIN-2015-06400 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of regulation of ribosome biogenesis and stress resistance in yeast
酵母核糖体生物发生和抗逆性的调控机制
- 批准号:
RGPIN-2015-06400 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
- 批准号:82371028
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
- 批准号:82371801
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
精氨酸调控骨髓Tregs稳态在脓毒症骨髓功能障碍中的作用研究
- 批准号:82371770
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
- 批准号:82371379
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
- 批准号:82372275
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
α-酮戊二酸调控ACMSD介导犬尿氨酸通路代谢重编程在年龄相关性听力损失中的作用及机制研究
- 批准号:82371150
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
mPFC-VTA-NAc多巴胺能投射调控丙泊酚麻醉—觉醒的机制研究
- 批准号:82371284
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Investigating the molecular mechanisms of early neuronal morphogenesis
研究早期神经元形态发生的分子机制
- 批准号:
10795510 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Subcellular mechanisms of subtype-specific neuron vulnerability in ALS and FTD: dysregulation of synapse-localized RNA, protein, and translation in mouse models and human cortico-spinal assembloids
ALS 和 FTD 中亚型特异性神经元脆弱性的亚细胞机制:小鼠模型和人类皮质脊髓组合体中突触定位 RNA、蛋白质和翻译的失调
- 批准号:
10716562 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Stress Response Mechanisms Regulating Neuronal Health in the Mammalian Central Nervous System.
调节哺乳动物中枢神经系统神经元健康的应激反应机制。
- 批准号:
10729206 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Coupling Epitranscriptomics to Molecular Disease Mechanisms and Nucleic Acid Therapeutics in Persistent Residual HIV Infection
表观转录组学与持续残留 HIV 感染的分子疾病机制和核酸治疗的耦合
- 批准号:
10462348 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Investigating the molecular mechanisms of early neuronal morphogenesis
研究早期神经元形态发生的分子机制
- 批准号:
10545077 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Small Proteins and Epitranscriptomic Factors: Emerging Mechanisms in Bacterial Gene Regulation
小蛋白质和表观转录因子:细菌基因调控的新兴机制
- 批准号:
10501172 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Ribosome Quality Control Mechanisms in Gram-positive Bacteria
革兰氏阳性细菌的核糖体质量控制机制
- 批准号:
10674019 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Investigating the molecular mechanisms of early neuronal morphogenesis
研究早期神经元形态发生的分子机制
- 批准号:
10581999 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Investigating the molecular mechanisms of early neuronal morphogenesis
研究早期神经元形态发生的分子机制
- 批准号:
10347721 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Mechanisms of translational regulation by the unfolded protein response
未折叠蛋白反应的翻译调节机制
- 批准号:
10449925 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别: