Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation

基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类

基本信息

  • 批准号:
    RGPIN-2016-04218
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The research program proposed in this application aims at fast & accurate classification of ophthalmic Optical Coherence Tomography (OCT) images based on sparse representation. Manual analysis of ophthalmic images is a time and labor intensive subjective procedure. Therefore, in recent years automatic analysis of such images has gained a lot of interest. One of the more recent modalities used to obtain detailed images from within the retina is OCT. OCT is one of the fastest adopted technologies in ophthalmology for diagnosis and study of retinal pathologies. Combining OCT technologies with image processing techniques provides detail information about different internal layers of retina that are crucial for diagnosis of diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD) – the three leading causes of blindness. Although a fair amount of interesting work has been done to develop fully/semi- automatic OCT image analysis, these attempts have been usually limited to preprocessing or segmentation of intra-retinal layers. The main goal of this research program is to introduce a novel modeling approach that allows automatic classification of OCT data into 4 categories: 1) normal, 2) glaucoma, 3) diabetic retinopathy, and 4) AMD. The main advantage of automatic classification of OCT data is in its application in remote monitoring devices. Remote monitoring will reduce doctor visits by eliminating unnecessary referrals which in turn improves the care provided to those who actually need special care. To reach the main goal of this research, the applicant proposes an atomic representation modeling. At first, the best atoms (basis functions of our transform, also known as dictionary) are found that fit best on each category. These atoms can produce a new model for the OCT data. The coefficients of the atomic representation can be used for classification purpose. For example, for normal data each intra-retinal layer can be represented by its specific independent atoms; therefore, the normal data can be reconstructed by a combination of these atoms. Similarly, a different set of atoms (and so a different model) for AMD data are investigated, i.e., the proposed atoms for cysts in AMD are different from each layer's atoms. After finding the best model for each category, the obtained (sparse) coefficients are used for classification instead of directly classifying the images.**
本申请中提出的研究计划旨在基于稀疏表示对眼科光学相干断层扫描(OCT)图像进行快速准确的分类。眼科图像的手动分析是时间和劳动密集的主观过程。因此,近年来,对这种图像的自动分析获得了很大的兴趣。用于从视网膜内获得详细图像的最新模式之一是OCT。OCT是眼科学中用于诊断和研究视网膜病变的最快采用的技术之一。OCT技术与图像处理技术相结合,提供了有关视网膜不同内层的详细信息,这些信息对于青光眼、糖尿病视网膜病变和年龄相关性黄斑变性(AMD)等疾病的诊断至关重要-这是导致失明的三大原因。尽管已经进行了相当多的有趣的工作来开发全/半自动OCT图像分析,但是这些尝试通常限于视网膜内层的预处理或分割。本研究计划的主要目标是引入一种新的建模方法,该方法允许将OCT数据自动分类为4类:1)正常,2)青光眼,3)糖尿病视网膜病变和4)AMD。OCT数据自动分类的主要优点在于其在远程监控设备中的应用。远程监测将通过消除不必要的转诊来减少医生就诊,从而改善向实际需要特殊护理的人提供的护理。为了达到本研究的主要目标,申请人提出了原子表示建模。首先,找到最适合每个类别的最佳原子(我们的变换的基函数,也称为字典)。这些原子可以产生OCT数据的新模型。原子表示的系数可以用于分类目的。例如,对于正常数据,每个视网膜内层可以由其特定的独立原子表示;因此,正常数据可以由这些原子的组合来重建。类似地,研究了AMD数据的不同原子集(以及因此不同的模型),即,AMD中孢囊的建议原子与每层的原子不同。在找到每个类别的最佳模型后,获得的(稀疏)系数用于分类,而不是直接对图像进行分类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lakshminarayanan, vasudevan其他文献

Lakshminarayanan, vasudevan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lakshminarayanan, vasudevan', 18)}}的其他基金

Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
  • 批准号:
    RGPIN-2016-04218
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
  • 批准号:
    RGPIN-2016-04218
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
  • 批准号:
    RGPIN-2016-04218
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
  • 批准号:
    RGPIN-2018-05226
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
  • 批准号:
    RGPIN-2018-05226
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic and accurate identification of aerobic bacteria, anaerobic bacteria, yeasts, and fungi in clinical samples derived from animals and from feed for pets
自动、准确地鉴定来自动物和宠物饲料的临床样品中的需氧细菌、厌氧细菌、酵母菌和真菌
  • 批准号:
    10440741
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
  • 批准号:
    RGPIN-2016-04218
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
  • 批准号:
    RGPIN-2016-04218
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
  • 批准号:
    RGPIN-2018-05226
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
  • 批准号:
    RGPIN-2018-05226
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
  • 批准号:
    RGPIN-2016-04218
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
  • 批准号:
    RGPIN-2018-05226
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Fast, Accurate and Automatic Segmentation and Classification of Ophthalmic Optical Coherence Tomography Images Based on Sparse Representation
基于稀疏表示的眼科光学相干断层扫描图像快速、准确、自动分割与分类
  • 批准号:
    RGPIN-2016-04218
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了