Mechanobiology of the Endothelial Cell Glyxcocalyx

内皮细胞糖萼的力学生物学

基本信息

  • 批准号:
    RGPIN-2018-06161
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Over the past 15 years, my lab has developed unique models and techniques to help understand how cells sense and respond to mechanical forces (mechanobiology). In the next 5 years I will use my NSERC discovery grant to further our investigation into endothelial cell mechanobiology. Recent work has led us to focus on the role of the gel-like layer that covers cells, the glycocalyx (GCX). This delicate sugar-based structure is believed to be a major regulator of endothelial cell physiology. We have shown that enzymatic degradation of the GCX abrogates the natural response of these cells to wall shear stress. We have also observed that endothelial cells in regions of wall shear stress gradients show damage to the GCX. We hypothesize that damage to the endothelial cell GCX can unbalance the natural mechanobiology of cells leading to dysfunction. How cells convert mechanical stress into biological events (mechanotransduction) is poorly understood. Moreover, how the cell regulates the elements that sense these stresses (mechanosensors) is largely undiscovered. The long term goal of the proposed research is to understand the cellular signaling involved in mechanotransduction and how the cell regulates this response by manipulating its mechanosensors. In the next 5 years, my lab will focus on the mechanobiology of the GCX. Specifically, we will use our in vitro models to:******1. Understand how cells regulate their glycocalyx in response to biomechanical forces***2. Identify components of the glycocalyx important to mechanosensing***3. Elucidate signaling pathways linked to glycocalyx mechanotransduction******The research will include experiments designed to impart defined wall shear stress gradients to endothelial cells in vitro. The effect of the mechanical environment on shedding and regrowth of the GCX will be identified. We will also manipulate the composition of the endothelial cell GCX to identify key components and ways to mitigate damage. We will block suspected pathways involved in mechanotransduction by the GCX to unravel intracellular signaling. ******Overall, the work will further our understanding of the fundamental process in cells that allow them to adapt to their mechanical environment. The underlying data obtained will have a significant impact in tissue engineering, drug discovery, developmental biology and pathology. The program will provide an excellent training environment for HQP. It will push the boundaries of science and engineering by developing new models and analysis techniques. Finally, the work will require HQP to work in a multidisciplinary environment, leveraging their engineering background to elucidate the mechanobiology of the GCX.
在过去的15年里,我的实验室开发了独特的模型和技术来帮助理解细胞如何感知和响应机械力(机械生物学)。在接下来的5年里,我将使用我的NSERC发现基金来进一步研究内皮细胞机械生物学。最近的工作使我们将重点放在覆盖细胞的凝胶样层-糖萼(GCX)的作用上。这种以糖为基础的微妙结构被认为是内皮细胞生理的主要调节因素。我们已经证明,GCX的酶降解取消了这些细胞对壁切应力的自然反应。我们还观察到,壁切应力梯度区域的内皮细胞显示出对GCX的损伤。我们假设,对内皮细胞GCX的损伤可以破坏细胞的自然机械生物学,导致功能障碍。细胞如何将机械压力转化为生物事件(机械转导)还知之甚少。此外,细胞如何调节感受这些压力的元件(机械传感器)在很大程度上还没有被发现。这项拟议研究的长期目标是了解参与机械转导的细胞信号,以及细胞如何通过操纵其机械传感器来调节这种反应。在接下来的5年里,我的实验室将专注于GCX的机械生物学。具体地说,我们将使用我们的体外模型来:*1.了解细胞如何在生物机械力的作用下调节其糖基化反应*2.识别对机械感觉重要的糖萼成分*3.阐明与糖萼机械转导有关的信号通路*该研究将包括设计用于在体外将确定的壁切应力梯度传递给内皮细胞的实验。力学环境对GCX脱落和再生长的影响将被识别。我们还将操纵内皮细胞GCX的组成,以确定关键成分和减轻损害的方法。我们将阻止GCX参与机械转导的可疑通路,以解开细胞内信号转导。总体而言,这项工作将进一步加深我们对细胞中允许它们适应其机械环境的基本过程的理解。所获得的基础数据将对组织工程、药物发现、发育生物学和病理学产生重大影响。该项目将为HQP提供良好的培训环境。它将通过开发新的模型和分析技术来推动科学和工程的边界。最后,这项工作将要求HQP在多学科环境中工作,利用他们的工程背景来阐明GCX的机械生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leask, Richard其他文献

Leask, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leask, Richard', 18)}}的其他基金

Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Nondestructive Mechanical Testing of Endovascular Devices****
血管内器械的无损机械测试****
  • 批准号:
    533972-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Grants Program
Biomechanics of the Cell Plasma Membrane: The effect of shear stress and cell stiffness on temporary cell permeabilization
细胞质膜的生物力学:剪切应力和细胞刚度对临时细胞透化的影响
  • 批准号:
    261938-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Biomechanics of the Cell Plasma Membrane: The effect of shear stress and cell stiffness on temporary cell permeabilization
细胞质膜的生物力学:剪切应力和细胞刚度对临时细胞透化的影响
  • 批准号:
    261938-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Biomechanics of the Cell Plasma Membrane: The effect of shear stress and cell stiffness on temporary cell permeabilization
细胞质膜的生物力学:剪切应力和细胞刚度对临时细胞透化的影响
  • 批准号:
    261938-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Biomechanical Platform for Customized Experimental Setups
用于定制实验设置的生物力学平台
  • 批准号:
    488932-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Grants Program
Biomechanics of the Cell Plasma Membrane: The effect of shear stress and cell stiffness on temporary cell permeabilization
细胞质膜的生物力学:剪切应力和细胞刚度对临时细胞透化的影响
  • 批准号:
    261938-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
CAREER: Modulating endothelial cell function using targeted electrical stimulation
职业:使用靶向电刺激调节内皮细胞功能
  • 批准号:
    2338949
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
ERI: Biological Effects of Low-Frequency, Low-Intensity Ultrasound on Endothelial Cell and Macrophage Co-Culture
ERI:低频、低强度超声对内皮细胞和巨噬细胞共培养的生物学效应
  • 批准号:
    2347558
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
  • 批准号:
    23K23887
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
  • 批准号:
    2339054
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
  • 批准号:
    10750690
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
Reverse translarional research based on cultured human corneal endothelial cell injection therapy
基于培养人角膜内皮细胞注射疗法的反向翻译研究
  • 批准号:
    23H03062
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of the antioxidant function of xCT in lymphatic endothelial cells and its significance in oral squamous cell carcinoma.
淋巴管内皮细胞xCT抗氧化功能分析及其在口腔鳞癌中的意义
  • 批准号:
    23K16139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
General Capillary to Arterial Endothelial Cell Transition in Pulmonary Arterial Hypertension
肺动脉高压中毛细血管内皮细胞向动脉内皮细胞的转变
  • 批准号:
    10716738
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了