Data-driven condition-based maintenance models

数据驱动的基于状态的维护模型

基本信息

  • 批准号:
    499283-2016
  • 负责人:
  • 金额:
    $ 10.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Manufacturing, service, and process-oriented companies can spend 25% to 50% of their total cost of operations on maintenance of critical equipment. Examples of these include mining companies, steel producers, airlines, pulp mills, oil producers, as well as many others. The unavailability of a critical piece of equipment when it is needed can result in severe financial loss to the company. Condition-based maintenance (CBM) is one of the key maintenance tactics employed within organizations with the goal of obtaining as much life out of the equipment as is economically justifiable before making the decision to replace or repair it.****Once CBM is identified as appropriate for a given maintenance situation, making optimal maintenance decisions depends on an understanding of the equipment's condition, the use of appropriate failure and decision models, the selection of a suitable optimization methodology, and a powerful implementation tool. The Centre for Maintenance Optimization and Reliability Engineering (C-MORE) at the University of Toronto has generated significant research outputs in all of these areas. C-MORE now seeks to extend and enhance these achievements in several directions.****We will advance the state of the art in the statistical interpretation of reliability data, mainly to deal with problems with missing information in the early parts of long-lived asset histories. We will investigate degradation models as they fit into frameworks for remaining life optimal decision calculations, along with further advances specifically for remaining life estimation. We will also expand our previous work on CBM with limited data using expert knowledge elicitation and Bayesian statistics.
制造、服务和流程型公司可以将其运营总成本的25%到50%用于关键设备的维护。这些例子包括矿业公司、钢铁生产商、航空公司、纸浆厂、石油生产商以及许多其他公司。关键设备在需要时无法使用,可能会给公司造成严重的财务损失。基于状态的维护(CBM)是组织内部采用的关键维护策略之一,其目标是在做出更换或维修决定之前尽可能延长设备的寿命。*一旦确定CBM适合于给定的维护情况,做出最佳维护决策取决于对设备状况的了解、使用适当的故障和决策模型、选择合适的优化方法和强大的实施工具。多伦多大学维修优化和可靠性工程中心(C-MORE)在所有这些领域都产生了重要的研究成果。C-MORE现在寻求在几个方向上扩展和加强这些成就。*我们将在可靠性数据的统计解释方面推进最先进的技术,主要是处理长期资产历史的早期部分缺少信息的问题。我们将研究退化模型,因为它们适合剩余寿命最优决策计算的框架,以及专门用于剩余寿命估计的进一步进展。我们还将利用专家知识启发和贝叶斯统计,利用有限的数据扩大我们以前在煤层气方面的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lee, ChiGuhn其他文献

Lee, ChiGuhn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lee, ChiGuhn', 18)}}的其他基金

Reinforcement learning approach to the optimal stopping problem
最优停止问题的强化学习方法
  • 批准号:
    RGPIN-2021-02760
  • 财政年份:
    2022
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Discovery Grants Program - Individual
Reinforcement learning approach to the optimal stopping problem
最优停止问题的强化学习方法
  • 批准号:
    RGPIN-2021-02760
  • 财政年份:
    2021
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Discovery Grants Program - Individual
Transfer learning for continual learning in non-stationary environments
用于非静态环境中持续学习的迁移学习
  • 批准号:
    553522-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Alliance Grants
Machine Learning-enhanced approaches to optimization of supply chain management at Nestlé Canada
雀巢加拿大采用机器学习增强方法优化供应链管理
  • 批准号:
    538626-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Collaborative Research and Development Grants
Transfer learning for continual learning in non-stationary environments
用于非静态环境中持续学习的迁移学习
  • 批准号:
    553522-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Alliance Grants
Machine Learning-enhanced approaches to optimization of supply chain management at Nestlé Canada
雀巢加拿大采用机器学习增强方法优化供应链管理
  • 批准号:
    538626-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Collaborative Research and Development Grants
Assistive sequential decision making framework
辅助顺序决策框架
  • 批准号:
    RGPIN-2019-05460
  • 财政年份:
    2019
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Economic Change Detection with Imperfect Information
不完全信息下的最优经济变化检测
  • 批准号:
    RGPIN-2014-04145
  • 财政年份:
    2018
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Economic Change Detection with Imperfect Information
不完全信息下的最优经济变化检测
  • 批准号:
    RGPIN-2014-04145
  • 财政年份:
    2017
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Optimization with Learning Approach to Dynamic Pricing with Financial Milestones
具有财务里程碑的动态定价学习方法的动态优化
  • 批准号:
    507238-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Host and microbe-dependent mechanisms of enhanced autoimmune susceptibility driven by checkpoint inhibitors
检查点抑制剂驱动的增强自身免疫易感性的宿主和微生物依赖性机制
  • 批准号:
    10750805
  • 财政年份:
    2023
  • 资助金额:
    $ 10.77万
  • 项目类别:
NCI Pediatric In Vivo Testing Program: Neuroblastoma
NCI 儿科体内测试项目:神经母细胞瘤
  • 批准号:
    10300212
  • 财政年份:
    2021
  • 资助金额:
    $ 10.77万
  • 项目类别:
NCI Pediatric In Vivo Testing Program: Neuroblastoma
NCI 儿科体内测试项目:神经母细胞瘤
  • 批准号:
    10437913
  • 财政年份:
    2021
  • 资助金额:
    $ 10.77万
  • 项目类别:
NCI Pediatric In Vivo Testing Program: Neuroblastoma
NCI 儿科体内测试项目:神经母细胞瘤
  • 批准号:
    10653064
  • 财政年份:
    2021
  • 资助金额:
    $ 10.77万
  • 项目类别:
Innovative Data Driven Techniques for Structural Condition Monitoring
用于结构状态监测的创新数据驱动技术
  • 批准号:
    FT190100801
  • 财政年份:
    2020
  • 资助金额:
    $ 10.77万
  • 项目类别:
    ARC Future Fellowships
Vehicle navigation system for detecting and escape from driven snow pile under low visible condition caused by snow storm
用于在暴风雪造成的低可见度条件下检测和逃离驱动雪堆的车辆导航系统
  • 批准号:
    18K04630
  • 财政年份:
    2018
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An integrated physics-based and data-driven approach to structural condition identification
一种基于物理和数据驱动的结构状况识别综合方法
  • 批准号:
    EP/R021090/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Research Grant
An online, risk driven, condition monitoring, predictive maintenance management and design upscaling tool for marine energy devices (RISKMAN)
用于海洋能源设备的在线风险驱动状态监测、预测性维护管理和设计升级工具 (RISKMAN)
  • 批准号:
    103495
  • 财政年份:
    2017
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Collaborative R&D
Innovative machine learning algorithm driven by violation of detailed balance condition
由违反详细平衡条件驱动的创新机器学习算法
  • 批准号:
    16K13849
  • 财政年份:
    2016
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Data-driven condition-based maintenance models
数据驱动的基于状态的维护模型
  • 批准号:
    499283-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 10.77万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了