Assistive sequential decision making framework

辅助顺序决策框架

基本信息

  • 批准号:
    RGPIN-2019-05460
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This research focuses on developing algorithms to maximize the impact of smart technologies when they are integrated into business processes. We will specifically investigate team decision making problems, in which only a sub-set of decision makers are capable of making decisions optimally to achieve the overarching goal of the entire team. The agents either optimal or sub-optimal make decisions over time as the system makes transitions through states. Upon reaching a decision, each agent will receive a reward conditional on the system state and actions taken by her as well as all other agents.******The proposed decision process is useful in a wide range of applications, from manufacturing to supply chain management to military operations. For instance, the decision process could maximize the productivity of a robotic assembly cell where two robots and a human operator work together to assemble a large automotive component. Rather than separating robots from human operators for safety, the proposed decision processes could help ensure the robots can plan their paths of movement so that they complement the operations done by the human operators while ensuring the safety of the human operators.******The proposed assistive decision process is an extension of the Markov decision processes to multi-agent scenarios as well as reinforcement learning. The presence of multiple decision makers poses challenges such as computational complexity, stability of the process and behavioural modeling of human decision makers. These challenges have resulted in the current literature severely lacking in this area despite the increasing importance of the topic as the society turns more and more automated. This program will tackle these three challenges using dimension reduction, optimal trade-offs between exploration and exploitation, and inverse reinforcement learning. ******This research is timely given the rapid adoption of artificial intelligence and autonomous systems. The assistive decision process can be used as the mathematical backbone in control systems to overcome the challenges that currently limit the use of autonomous multi-agent systems. This work will thus help Canada become a leader in autonomous manufacturing, transportation, surveillance and security, and communications. **
这项研究的重点是开发算法,以最大限度地发挥智能技术的影响,当它们被集成到业务流程。我们将专门研究团队决策问题,其中只有决策者的子集能够做出最佳决策,以实现整个团队的总体目标。随着系统在状态之间的转换,代理人会随着时间的推移做出最优或次优的决策。在做出决定后,每个代理将根据系统状态和她以及所有其他代理所采取的行动获得奖励。建议的决策过程是有用的,在广泛的应用,从制造业到供应链管理的军事行动。例如,决策过程可以最大限度地提高机器人装配单元的生产率,其中两个机器人和一名操作员一起工作来装配大型汽车部件。建议的决策过程可以帮助确保机器人可以规划其移动路径,从而在确保人类操作员安全的同时补充人类操作员所做的操作,而不是将机器人与人类操作员分开。建议的辅助决策过程是马尔可夫决策过程的扩展,多智能体的情况下,以及强化学习。多个决策者的存在带来了挑战,如计算复杂性,过程的稳定性和人类决策者的行为建模。这些挑战导致目前的文献严重缺乏在这方面,尽管随着社会变得越来越自动化的主题越来越重要。该计划将使用降维,探索和利用之间的最佳权衡以及反向强化学习来解决这三个挑战。* 鉴于人工智能和自主系统的迅速采用,这项研究是及时的。辅助决策过程可以被用作控制系统的数学骨干,以克服目前限制自治多智能体系统使用的挑战。因此,这项工作将帮助加拿大成为自动制造、运输、监控和安全以及通信领域的领导者。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lee, ChiGuhn其他文献

Lee, ChiGuhn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lee, ChiGuhn', 18)}}的其他基金

Reinforcement learning approach to the optimal stopping problem
最优停止问题的强化学习方法
  • 批准号:
    RGPIN-2021-02760
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Reinforcement learning approach to the optimal stopping problem
最优停止问题的强化学习方法
  • 批准号:
    RGPIN-2021-02760
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Transfer learning for continual learning in non-stationary environments
用于非静态环境中持续学习的迁移学习
  • 批准号:
    553522-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alliance Grants
Machine Learning-enhanced approaches to optimization of supply chain management at Nestlé Canada
雀巢加拿大采用机器学习增强方法优化供应链管理
  • 批准号:
    538626-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Transfer learning for continual learning in non-stationary environments
用于非静态环境中持续学习的迁移学习
  • 批准号:
    553522-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alliance Grants
Machine Learning-enhanced approaches to optimization of supply chain management at Nestlé Canada
雀巢加拿大采用机器学习增强方法优化供应链管理
  • 批准号:
    538626-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven condition-based maintenance models
数据驱动的基于状态的维护模型
  • 批准号:
    499283-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Optimal Economic Change Detection with Imperfect Information
不完全信息下的最优经济变化检测
  • 批准号:
    RGPIN-2014-04145
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Economic Change Detection with Imperfect Information
不完全信息下的最优经济变化检测
  • 批准号:
    RGPIN-2014-04145
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Optimization with Learning Approach to Dynamic Pricing with Financial Milestones
具有财务里程碑的动态定价学习方法的动态优化
  • 批准号:
    507238-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program

相似国自然基金

微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Discrete Structural Optimization through a Sequential Decision Process
通过顺序决策过程进行离散结构优化
  • 批准号:
    2322853
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
  • 批准号:
    2246187
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
The Natural History of Overall Mortality with Diagnosed Symptomatic Gallstone Disease in the United States: A Sequential Mixed-methods Study Evaluating Emergency, Non-emergency, and No Cholecystectomy
美国诊断有症状胆结石病的总体死亡率的自然史:一项评估紧急、非紧急和不进行胆囊切除术的序贯混合方法研究
  • 批准号:
    10664339
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
P1: Sources and Mechanisms of Sequential Activity
P1:顺序活动的来源和机制
  • 批准号:
    10705963
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
  • 批准号:
    10583917
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Sequential Decision Making with Imperfect Information: Machine Learning and Information Theory
不完美信息的顺序决策:机器学习和信息论
  • 批准号:
    23K17547
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
  • 批准号:
    10755010
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Construction of Large-Scale Sequential Decision-Making Methods Leveraging Structures
利用结构构建大规模顺序决策方法
  • 批准号:
    23K19986
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
  • 批准号:
    2303000
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
  • 批准号:
    2302999
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了