Homology growth in families of locally symmetric spaces

局部对称空间族中的同源增长

基本信息

  • 批准号:
    RGPIN-2018-04784
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Work of Serre, Ash, Calegari-Venkatesh, Bergeron-Venkatesh, and Scholze paints a very compelling ***picture of the significance of torsion in the homology of arithmetic groups. Systems of eigenvalues ***for Hecke operators acting on the homology of locally symmetric spaces associated with congruence ***arithmetic groups are now expected to be the universal source of number fields whose Galois groups ***are Lie groups of finite type. This expectation has been dubbed the "Langlands program over Z"; it ***includes Serre's conjecture on the modularity of odd, 2-dimensional mod p Galois representations as ***a special case. ******The Langlands Program over Z would be vacuous if not for quantitative (asymptotic) results proving ***that torsion in the homology of arithmetic groups is (at least sometimes) abundant. A convincing ***model predicting exactly which arithmetic groups should contain abundant torsion in their homology ***was laid out in work of Bergeron-Venkatesh; significant supporting evidence was proven ibid and in ***works of Marshall-Muller, Muller-Pfaff, and others. Current understanding of torsion growth, however, ***is very limited in "weights" for which both torsion and rational cohomology coexist. ******Furthermore, ***- If we expect torsion to be abundant in the homology of an explicit arithmetic group, then surely ***we should be able to "see it on a computer". ***- The landscape of reciprocity over Z is "wide open" and full of conjecture. The most germane ***conjectures therein are falsifiable and it seems very worthwhile to confirm them computationally, ***insofar as it is possible.******State of the art approaches for computing the homology of arithmetic groups, however, are ad hoc and ***have limited scope due to algorithmic efficiency issues. Devising algorithms to efficiently compute ***the homology of arithmetic groups (and Hecke actions thereon) is therefore very worthwhile. ************My research program, over the next five years, will center around the above two themes. Namely, it ***will study: ******(A) growth of topological invariants in families of finite volume locally symmetric spaces, especially ***torsion in homology. ***(B) how to effectively and efficiently compute these invariants.******My most significant progress on these problems:***(A*) (from one year ago) Joint with Mark Stern, I show that tiny 1-form Laplacian eigenvalues on hyperbolic 3-manifolds, a known obstruction to growth of torsion in the first homology group, are related to the failure of short loops to be ``efficiently bounded." ***(B*) (ongoing) Joint with Aurel Page, we devise a general, efficient algorithm to computing the topology of congruence, arithmetic locally symmetric spaces and Hecke actions thereon. ******Torsion in the homology of arithmetic groups is a "hot topic"; the time is ripe for progress on ***problems (A) and (B) and such progress would have great utility. Meditation on my works with Stern ***and Page, alluded in (A*) and (B*), inspired many of specific problems I suggest in the ***present proposal.
Serre,Ash,Calegari-Venkatesh,Bergeron-Venkatesh和Scholze的作品绘制了非常引人注目的***图片,描述了扭转在算术组同源性中的重要性。针对与一致性相关的本地对称空间同源的Hecke运算符的特征值的系统*** ***算术群现在预计将是数字字段的通用来源。这种期望被称为“ Z上的Langlands计划”; IT ***包括Serre对奇数,二维mod p galois表示的模块化的猜想,为***一种特殊情况。 ******如果不是定量(渐近)结果,Z上的Langlands计划将是空置的,证明***算术组的同源性扭转(至少有时)丰富。令人信服的***模型准确地预测了哪些算术群应该在其同源性中包含丰富的扭转***在Bergeron-Venkatesh的工作中布置;在Marshall-Muller,Muller-Pfaff等人的***作品中证明了大量的支持证据。然而,当前对扭转生长的理解在“权重”中非常有限,扭转和理性的共同体共存。 ****** *** - *** - 如果我们期望在显式算术组的同源性中扭曲丰富,那么***肯定应该能够“在计算机上看到它”。 *** - Z上互惠的景观是“宽开”的,充满了猜想。其中最隐秘的猜想是可伪造的,而且似乎非常值得在计算上确认它们,如果可能的可能。因此,设计算法有效地计算***算术群的同源性(和Hecke Actions)非常值得。 ************我的研究计划在接下来的五年中,将围绕上述两个主题。也就是说,它将研究:******(a)有限体积局部对称空间的拓扑不变性的增长,尤其是同源性的***扭转。 ***(b)如何有效,有效地计算这些不变的。 “ ***(b*)(持续)与Aurel页面的联合,我们设计了一种一般,有效的算法来计算一致性,算术在本地对称的空间和Hecke的拓扑结构。我与Stern ***和Page的合作,在(A*)和(B*)中提到,启发了我在***目前的建议中提出的许多具体问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lipnowski, Michael其他文献

The Seiberg-Witten equations and the length spectrum of hyperbolic three-manifolds
Seiberg-Witten 方程和双曲三流形的长度谱

Lipnowski, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lipnowski, Michael', 18)}}的其他基金

Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    DGECR-2018-00278
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement
The inverse gowers conjectures in additive number theory
加法数论中的逆高尔斯猜想
  • 批准号:
    361869-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The inverse gowers conjectures in additive number theory
加法数论中的逆高尔斯猜想
  • 批准号:
    361869-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The inverse gowers conjectures in additive number theory
加法数论中的逆高尔斯猜想
  • 批准号:
    361869-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Roth`s Theorem in Additive Number Theory
加法数论中的罗斯定理
  • 批准号:
    361869-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Postgraduate Scholarships - Master's
Math in moscow
莫斯科的数学
  • 批准号:
    349606-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.17万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

创新走廊的生长机理、空间绩效与规划策略研究——以长三角地区为例
  • 批准号:
    52378045
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
  • 批准号:
    32370325
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
辽西北半干旱区秸秆覆盖种植玉米水分运移与生长模拟研究
  • 批准号:
    32301689
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
土壤氧化锰矿物晶质化形成的晶体生长与定向组装机制研究
  • 批准号:
    42377303
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
m6A修饰在紫荆木幼苗生长与防御中的调控机制
  • 批准号:
    32371742
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    DGECR-2018-00278
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了