Roth`s Theorem in Additive Number Theory

加法数论中的罗斯定理

基本信息

  • 批准号:
    361869-2008
  • 负责人:
  • 金额:
    $ 1.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Postgraduate Scholarships - Master's
  • 财政年份:
    2008
  • 资助国家:
    加拿大
  • 起止时间:
    2008-01-01 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要-Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lipnowski, Michael其他文献

The Seiberg-Witten equations and the length spectrum of hyperbolic three-manifolds
Seiberg-Witten 方程和双曲三流形的长度谱

Lipnowski, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lipnowski, Michael', 18)}}的其他基金

Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2022
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2021
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2020
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2019
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2018
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    DGECR-2018-00278
  • 财政年份:
    2018
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Discovery Launch Supplement
The inverse gowers conjectures in additive number theory
加法数论中的逆高尔斯猜想
  • 批准号:
    361869-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The inverse gowers conjectures in additive number theory
加法数论中的逆高尔斯猜想
  • 批准号:
    361869-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The inverse gowers conjectures in additive number theory
加法数论中的逆高尔斯猜想
  • 批准号:
    361869-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Math in moscow
莫斯科的数学
  • 批准号:
    349606-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.26万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

局部相依结构下的自正则化及非自正则化的精细中心极限定理
  • 批准号:
    12301182
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
偏微分方程解的水平集的凸性及常秩定理的几何应用
  • 批准号:
    12301237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
400km/h及更高速条件下高铁路基动力适应性与长期变形演化安定理论评估模型
  • 批准号:
    52308471
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于非交换留数理论和Gauss-Bonnet定理的流形几何性质研究
  • 批准号:
    12301063
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
问题性手机使用的人工智能干预研究——基于自我决定理论和压力应对理论的双轨机制
  • 批准号:
    82304258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Additive number theory in number fields
数域中的加法数论
  • 批准号:
    22K13886
  • 财政年份:
    2022
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elastic properties of metallic materials made by additive manufacturing
增材制造金属材料的弹性性能
  • 批准号:
    16H04236
  • 财政年份:
    2016
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical theory and application of spline regression
样条回归统计理论及应用
  • 批准号:
    26730019
  • 财政年份:
    2014
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dynamics and thermodynamics in non-additive systems
非加性系统中的动力学和热力学
  • 批准号:
    23560069
  • 财政年份:
    2011
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classifications of commutative Banach algebras and Banach modules and its applications
交换Banach代数和Banach模的分类及其应用
  • 批准号:
    22540168
  • 财政年份:
    2010
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了