Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
基本信息
- 批准号:523634-2018
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Excellence in operation of process plants is attained by determining the best operating conditions (optimisation**of operation) and controlling their real-time operation to maintain these best conditions. Such control and**optimisation require accurate process models.**Since 1970s there have been two separate streams of model development: (i) rigorous models derived from**the first principles, and (ii) empirical models identified from plant data via methods developed in the**automatic control community. The former usually require a large effort in deriving the first principles**equations and construction of efficient algorithms for solving them. The latter have proceeded along the path**of identifying empirical models from the plant operating data. Even though significant advances have been**made, and there are many instances of very successful use of both types of models for optimisation and control,**respectively, there are still many opportunities for improvement. For instance, identification of models for**processes with large time delays**During the last decade there have been significant advances in artificial intelligence methods for speech**recognition, image recognition and classification, handwriting recognition etc. Foundation for these advances**are deep neural networks comprised on many layers. It has been found that specific neural network structures**are best at creating models for specific types of applications. This research proposes to identify very accurate**models from operating data by developing specific model structures for specific types of processes. It will**combine some first principles equations (e.g. mass and energy balances) with deep neural networks or with**models developed via identification methods from the automatic control field. Models predicting both**steady-state and dynamic behaviour will be developed, with particular attention devoted to models with large**time delays (e.g. ethane/ethylene splitter). Having developed a "standard form" of the model for specific**equipment will enable such models to be readily adjusted to represent specific equipment and be re-used.
通过确定最佳操作条件(操作优化 **)并控制其实时操作以保持这些最佳条件,可实现过程工厂的卓越操作。这种控制和 ** 优化需要精确的过程模型。**自20世纪70年代以来,有两个独立的模型开发流:(i)严格的模型来自 ** 的第一原则,和(ii)经验模型确定的工厂数据通过开发的方法在 ** 自动控制社区。前者通常需要大量的努力,推导第一原理方程和构造求解它们的有效算法。后者已经沿着从工厂运行数据中识别经验模型的路径 ** 前进。尽管已经取得了显著的进步,并且有许多非常成功地分别使用这两种类型的模型进行优化和控制的例子,但仍然有许多改进的机会。例如,识别具有大时间延迟的 ** 过程的模型 ** 在过去的十年中,语音识别、图像识别和分类、手写识别等人工智能方法取得了重大进展。已经发现,特定的神经网络结构 ** 最适合为特定类型的应用程序创建模型。本研究提出了通过为特定类型的过程开发特定的模型结构来从操作数据中识别非常准确的 ** 模型。它将 ** 联合收割机一些第一原理方程(例如质量和能量平衡)与深度神经网络或通过自动控制领域的识别方法开发的 ** 模型相结合。将开发预测 ** 稳态和动态行为的模型,特别注意具有大 ** 时间延迟的模型(例如乙烷/乙烯分离器)。为具体 ** 设备制定一个“标准形式”的模型,将使这些模型能够随时调整,以代表具体设备,并重新使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahalec, Vladimir其他文献
Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution
利用变尺寸多目标差分演化重构卫星轨道以进行合作观测
- DOI:
10.1016/j.ejor.2014.09.025 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:6.4
- 作者:
Chen, Yingguo;Mahalec, Vladimir;Sun, Kai - 通讯作者:
Sun, Kai
Mahalec, Vladimir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahalec, Vladimir', 18)}}的其他基金
Towards Zero GHG Emissions by Symbiotic Design and Operation of Industrial and Civic Entities
通过工业和民用实体的共生设计和运营实现温室气体零排放
- 批准号:
RGPIN-2022-04882 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
- 批准号:
523634-2018 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative Research and Development Grants
Data driven hybrid model identification for control and optimisation of petrochemical and refining plants
用于石化和炼油厂控制和优化的数据驱动混合模型识别
- 批准号:
523634-2018 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative Research and Development Grants
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:
341228-2007 - 财政年份:2010
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:
341228-2007 - 财政年份:2009
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:
341228-2007 - 财政年份:2008
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Hybrid modelling and optimization of process systems
过程系统的混合建模和优化
- 批准号:
341228-2007 - 财政年份:2007
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323547 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Automatic quality assessment of waste plastic bales through hybrid sensing and data driven modelling
通过混合传感和数据驱动建模对废塑料包进行自动质量评估
- 批准号:
EP/W026228/1 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Research Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323548 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323546 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Building a data-driven educational improvement platform by supporting hybrid class design
支持混合班级设计,构建数据驱动的教育改进平台
- 批准号:
23H00992 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Data-driven Thermal Management of Electric/Hybrid Vehicles for Optimum Energy Consumption
数据驱动的电动/混合动力汽车热管理以实现最佳能源消耗
- 批准号:
2683123 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Studentship
NeTS: Small: Hybrid Switching in Data Center Networks: Systems-driven Modeling and Principled Algorithms
NetS:小型:数据中心网络中的混合交换:系统驱动的建模和原理算法
- 批准号:
2309187 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant