Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
基本信息
- 批准号:RGPIN-2016-03870
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For engineering problems that rely on large datasets, an inherent problem is dealing with uncertainties in the data. An approximate range of possible scenarios of the data may be available, but even these scenarios may change over time unpredictably. The aim of this research program is to develop new optimization methods for engineering applications with large-scale uncertain datasets and to demonstrate the utility of these methods for radiation therapy (RT) treatment planning. Radiation therapy, the most common cancer treatment method, uses high-energy beams to irradiate a cancerous target; an inherent challenge of this method is to limit exposure of surrounding healthy tissue to radiation as much as possible. In certain cancer sites, such as lung or breast, vital organs such as the heart are at a high risk of being damaged because of excessive radiation. The precise locations of the target and the surrounding healthy organs are uncertain because of movement caused by breathing or changes in the patient's internal anatomy throughout the treatment; this is particularly challenging because these movements are irregular and unpredictable. Through this research program, we will develop adaptive and robust optimization models that take into account all possible organ motion and deformation scenarios, and find the treatment plans that are optimal considering the underlying uncertainties. Our adaptive methodology will learn from observations of data and continuously improve the solution over time. In RT, for instance, we will track the organ movements throughout the treatment, and provide better predictions of future possible scenarios. ******The scope of this research program extends well beyond RT. For many engineering problems, such as financial engineering, production planning, environmental engineering, energy, and healthcare, the underlying data is subject to uncertainty and the range of uncertain scenarios may change over time unpredictably. This research program will advance the theory of adaptive and robust optimization to address these uncertainties, and develop a novel generalized framework that will enable a better use of optimization techniques in a variety of data-driven engineering applications. The operations research community has recently shown an increased interest in big data analytics. With large-scale datasets, the traditional optimization algorithms are often not computationally feasible for many real-world applications. We will develop specialized solution algorithms that will enable solving different classes of large-scale problems most efficiently. The development of these algorithms will require HQP, who will be trained in these specialized, sought after skills. The proposed research program will bridge the gap between the theory and application of optimization techniques for large-scale data-driven applications under uncertainty.**
对于依赖大型数据集的工程问题,一个固有的问题是处理数据中的不确定性。数据的可能场景的大致范围可能是可用的,但即使这些场景也可能随着时间的推移而不可预测地变化。该研究计划的目的是开发新的优化方法,用于工程应用与大规模的不确定数据集,并证明这些方法的实用性,放射治疗(RT)治疗计划。放射疗法是最常见的癌症治疗方法,使用高能束照射癌症靶点;这种方法的固有挑战是尽可能限制周围健康组织暴露于辐射。在某些癌症部位,如肺或乳腺,心脏等重要器官因过度辐射而受损的风险很高。目标和周围健康器官的精确位置是不确定的,因为在整个治疗过程中呼吸或患者内部解剖结构的变化引起的运动;这是特别具有挑战性的,因为这些运动是不规则的和不可预测的。通过这项研究计划,我们将开发自适应和强大的优化模型,考虑到所有可能的器官运动和变形的情况,并找到最佳的治疗计划,考虑到潜在的不确定性。我们的自适应方法将从数据观察中学习,并随着时间的推移不断改进解决方案。例如,在RT中,我们将在整个治疗过程中跟踪器官运动,并对未来可能的情况提供更好的预测。** 该研究项目的范围远远超出RT。对于许多工程问题,如金融工程,生产规划,环境工程,能源和医疗保健,基础数据受到不确定性的影响,不确定场景的范围可能会随着时间的推移而不可预测地变化。该研究计划将推进自适应和鲁棒优化理论,以解决这些不确定性,并开发一种新的通用框架,使优化技术在各种数据驱动的工程应用中得到更好的利用。运筹学界最近对大数据分析表现出越来越大的兴趣。对于大规模数据集,传统的优化算法在计算上往往不适用于许多实际应用。我们将开发专门的解决方案算法,以最有效地解决不同类别的大规模问题。这些算法的开发将需要HQP,他们将接受这些专业的培训,追求技能。拟议的研究计划将弥合不确定性下大规模数据驱动应用程序的优化技术的理论和应用之间的差距。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahmoudzadeh, Houra其他文献
Robust optimization methods for cardiac sparing in tangential breast IMRT
- DOI:
10.1118/1.4916092 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:3.8
- 作者:
Mahmoudzadeh, Houra;Lee, Jenny;Purdie, Thomas G. - 通讯作者:
Purdie, Thomas G.
A robust-CVaR optimization approach with application to breast cancer therapy
- DOI:
10.1016/j.ejor.2014.04.038 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:6.4
- 作者:
Chan, Timothy C. Y.;Mahmoudzadeh, Houra;Purdie, Thomas G. - 通讯作者:
Purdie, Thomas G.
Robust multi-class multi-period patient scheduling with wait time targets
- DOI:
10.1016/j.orhc.2020.100254 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:2.1
- 作者:
Mahmoudzadeh, Houra;Shalamzari, Akram Mirahmadi;Abouee-Mehrizi, Hossein - 通讯作者:
Abouee-Mehrizi, Hossein
Mahmoudzadeh, Houra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahmoudzadeh, Houra', 18)}}的其他基金
Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
- 批准号:
RGPIN-2016-03870 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
COVID-19: Optimizing Operations of Cancer Centres during the Pandemic
COVID-19:大流行期间优化癌症中心的运营
- 批准号:
551987-2020 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
- 批准号:
RGPIN-2016-03870 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
- 批准号:
RGPIN-2016-03870 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
- 批准号:
RGPIN-2016-03870 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
- 批准号:
RGPIN-2016-03870 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
- 批准号:
466020 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Directed Grant
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
- 批准号:
465699 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Directed Grant
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
- 批准号:
RGPIN-2022-05155 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Reducing the Global ICT Footprint via Self-adaptive Large-scale ICT Systems
通过自适应大型ICT系统减少全球ICT足迹
- 批准号:
EP/V007092/1 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Fellowship
Self-adaptive modelling of large-scale process systems using machine learning
使用机器学习对大型过程系统进行自适应建模
- 批准号:
2618330 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
- 批准号:
RGPIN-2016-03870 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
PFI-RP: Increasing the stability of large-scale electric power systems through an adaptive measurement-driven controller prototype.
PFI-RP:通过自适应测量驱动控制器原型提高大型电力系统的稳定性。
- 批准号:
1941101 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Large-Scale Adaptive and Robust Optimization with Application to Radiation Therapy
大规模自适应鲁棒优化及其在放射治疗中的应用
- 批准号:
RGPIN-2016-03870 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual