Self-adaptive modelling of large-scale process systems using machine learning
使用机器学习对大型过程系统进行自适应建模
基本信息
- 批准号:2618330
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
process systems can already be achieved by various means, often these models will eventually become an inaccurate representation of the real system, which results in the sub-optimal operation of the plant. This mismatch can begin to occur due to a number of reasons such as changes in the underlying system (e.g. fouling and equipment changes). Consequently, there is a need for highly-trained engineers to re-visit the problem and maintain the underlying models. This can incur major expenses and for the period of operation where the mismatch existed, this can also result in sub-optimal process operation resulting in the loss of significant profits. Additionally, this dependence on engineering effort creates a scaling problem for deploying model-based solutions for large process plants. All of these issues are especially relevant if the objective is to reach a higher degree of autonomy within industry as these issues act as obstacles to achieve the goal of autonomous industrial systems.For the above reasons, the objective of this PhD will be to develop data-driven self-adaptive modelling frameworks which can handle changes in the underlying system and adapt accordingly to guarantee the accuracy of the process model. If this can be achieved, the impact on large-scale industrial processes could be significant. This could potentially be achieved in a number of ways, but the main focus of this PhD will be to utilize statistical learning techniques ranging from simple machine learning methods to more complex deep learning algorithms. While many of these techniques have shown great promise for the task, some questions still remain regarding the applicability of these techniques to dynamic modelling of large-scale process systems, their scalability, the stability of training and the amount and variety of data required to achieve these objectives. Consequently, in this PhD we will investigate such open problems.
过程系统已经可以通过各种方法来实现,这些模型往往最终会变成对真实系统的不准确描述,从而导致工厂的次最优运行。出现这种不匹配的原因有很多,例如底层系统的变化(如结垢和设备变化)。因此,需要训练有素的工程师重新检查问题并维护基本模型。这可能会产生重大费用,对于存在不匹配的操作期间,这也可能导致次优的工艺操作,从而导致重大利润损失。此外,这种对工程工作的依赖为大型加工厂部署基于模型的解决方案带来了可伸缩性问题。如果目标是在行业内达到更高的自治度,所有这些问题都特别相关,因为这些问题是实现自主工业系统目标的障碍。基于上述原因,本博士学位的目标将是开发数据驱动的自适应建模框架,该框架可以处理底层系统的变化并相应地进行调整,以保证过程模型的准确性。如果能够实现这一点,对大规模工业流程的影响可能是巨大的。这可能通过多种方式实现,但本博士学位的主要重点将是利用统计学习技术,范围从简单的机器学习方法到更复杂的深度学习算法。虽然其中许多技术对这项任务显示出很大的前景,但在这些技术对大规模过程系统的动态建模的适用性、可扩展性、培训的稳定性以及实现这些目标所需的数据量和种类等方面仍然存在一些问题。因此,在这篇博士论文中,我们将研究这样的公开问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
下一代无线通信系统自适应调制技术及跨层设计研究
- 批准号:60802033
- 批准年份:2008
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
由蝙蝠耳轮和鼻叶推导新型仿生自适应波束模型的研究
- 批准号:10774092
- 批准年份:2007
- 资助金额:39.0 万元
- 项目类别:面上项目
相似海外基金
An adaptive surface for improved modelling of rough wall bounded turbulence
用于改进粗糙壁边界湍流建模的自适应表面
- 批准号:
DP240101743 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Next generation high throughput lipidomics using adaptive modelling
使用自适应建模的下一代高通量脂质组学
- 批准号:
DP230101795 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Experimentation and Modelling of Novel Adaptive Shaft Seals for use in Turbomachinery
涡轮机械用新型自适应轴密封件的实验和建模
- 批准号:
2889798 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Crystallisation optimisation and control using surrogate modelling and adaptive model predictive control
使用代理建模和自适应模型预测控制进行结晶优化和控制
- 批准号:
2746484 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
An adaptive individualization of Hierarchical sleep modelling using Bayesian deep learning
使用贝叶斯深度学习的分层睡眠模型的自适应个体化
- 批准号:
22K12276 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis
使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模
- 批准号:
EP/W023202/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
- 批准号:
RGPIN-2016-05221 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
- 批准号:
RGPIN-2016-05221 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Adaptive turbulence modelling to improve high-impact weather forecasts in next generation atmospheric models
自适应湍流建模可改善下一代大气模型中的高影响天气预报
- 批准号:
NE/T011351/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Fellowship
Pharmacokinetic modelling and adaptive design for regional tissue flow and extraction for preclinical PET/CT
临床前 PET/CT 局部组织流动和提取的药代动力学建模和自适应设计
- 批准号:
2463148 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship