Neural-Network-Aided Engineering: New Frontiers in Automation

神经网络辅助工程:自动化新领域

基本信息

  • 批准号:
    RGPIN-2018-05668
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Deep neural networks (DNN) are receiving tremendous attention because of the recent convergence in the availability of computing power and data. DNN excel at machine learning (ML): the many layers in DNN can learn patterns at many scales. However, more layers also implies: more data is required for training; and, inference takes longer. Advances in computing, from mobile devices to warehouse-scale clusters, means DNN are no longer impractical. Furthermore, there's never been more data. The era of DNN has arrived.*** ***We previously developed OPAL, which automatically designs and optimizes DNN by employing deep learning to determine the relationship between: DNN structure and behavior, and DNN performance. OPAL has been demonstrated optimizing accuracy and GPGPU inference energy on benchmark datasets. We propose to significantly extend OPAL to automatically design (1) DNN for ML performance- and cost-constrained applications in the IoT, (2) trustworthy DNN that can tolerate input irregularity and hardware failure, and (3) embedded multiprocessor systems-on-chips (MPSoC) optimized under power, thermal, and reliability constraints.*** ***First, we will develop a general framework in OPAL for specifying and implementing new objective (or, cost) functions. Alternative cost functions are needed when designing (a) for real-time constraints, or (b) anything without a high-performance GPGPU: i.e., most IoT systems. We will investigate the effect of predicting multiple, related objectives; we will then optimize DNN for new targets, including accelerators, real-time, embedded, and configurable systems.*** ***Second, we will devise metrics for measuring the effect that: (a) missing, or uncertain, input data; and, (b) hardware failure during inference; have on DNN performance. Such concerns arise in real data and environments but are not captured by benchmark data sets. We will develop methodology for measuring the resulting changes in accuracy, compensating for such issues, and ultimately optimizing systems to tolerate them.*** ***Third, we will use OPAL to design MPSoC. Given a target platform, designers assign application tasks to resources (mapping), and subsequently order their execution (scheduling). Of particular importance today is design under thermal or system lifetime constraints; we hypothesize that OPAL will efficiently learn the relationship between spatial task mapping and the resulting thermal and lifetime effects, finding better solutions faster.*** ***The benefits of this research for HQP and Canada are clear. Participating HQP will gain valuable experience with DNN and supporting infrastructure, positioning them well for the growing ML/IOT domain. Montreal and QC ML efforts will also benefit: our work will improve their existing solutions, and simplify the introduction of additional products and services by reducing the resources required for ML and IoT development.
由于最近在计算能力和数据可用性方面的收敛,深度神经网络(DNN)正受到极大的关注。DNN擅长机器学习(ML):DNN中的许多层可以在多个尺度上学习模式。然而,更多的层也意味着:训练需要更多的数据;推理需要更长的时间。从移动设备到仓库规模的集群,计算技术的进步意味着DNN不再不切实际。此外,从来没有更多的数据。DNN时代已经到来。*我们之前开发了Opal,它通过深度学习来确定DNN结构和行为与DNN性能之间的关系,从而自动设计和优化DNN。OPAL已经在基准数据集上证明了优化准确性和GPGPU推理能量。我们建议显著扩展OPAL以自动设计(1)物联网中性能和成本受限的ML应用的DNN,(2)能够容忍输入不规律和硬件故障的可信DNN,以及(3)在功耗、热量和可靠性约束下优化的嵌入式多处理器片上系统(MPSoC)。*首先,我们将在OPAL中开发一个通用框架来描述和实现新的目标(或成本)函数。当设计(A)实时约束,或(B)任何没有高性能GPGPU的东西时,需要替代的成本函数:即大多数物联网系统。我们将研究预测多个相关目标的影响;然后我们将针对新目标优化DNN,包括加速器、实时、嵌入式和可配置系统。*第二,我们将设计度量标准,以衡量以下影响:(A)丢失或不确定的输入数据;以及(B)推理过程中的硬件故障;对DNN性能的影响。这些担忧出现在真实的数据和环境中,但不被基准数据集捕获。我们将开发方法来测量由此产生的精度变化,补偿这些问题,并最终优化系统以容忍它们。*第三,我们将使用Opal来设计MPSoC。在给定目标平台的情况下,设计人员将应用程序任务分配给资源(映射),然后对它们的执行进行排序(调度)。今天尤其重要的是在热或系统寿命限制下进行设计;我们假设Opal将有效地学习空间任务映射与由此产生的热和寿命影响之间的关系,从而更快地找到更好的解决方案。*这项研究对HQP和加拿大的好处是显而易见的。参与的HQP将在DNN和支持基础设施方面获得宝贵的经验,为不断增长的ML/IOT领域做好准备。蒙特利尔和QC ML的努力也将受益:我们的工作将改进他们现有的解决方案,并通过减少ML和物联网开发所需的资源来简化更多产品和服务的推出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meyer, Brett其他文献

Digital Phenotypes of Instability and Fatigue Derived From Daily Standing Transitions in Persons With Multiple Sclerosis.
  • DOI:
    10.1109/tnsre.2023.3271601
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    VanDyk, Tyler;Meyer, Brett;DePetrillo, Paolo;Donahue, Nicole;O'Leary, Aisling;Fox, Sam;Cheney, Nick;Ceruolo, Melissa;Solomon, Andrew J.;McGinnis, Ryan S.
  • 通讯作者:
    McGinnis, Ryan S.
Evaluation of unsupervised 30-second chair stand test performance assessed by wearable sensors to predict fall status in multiple sclerosis.
  • DOI:
    10.1016/j.gaitpost.2022.02.016
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Tulipani, Lindsey J.;Meyer, Brett;Allen, Dakota;Solomon, Andrew J.;McGinnis, Ryan S.
  • 通讯作者:
    McGinnis, Ryan S.

Meyer, Brett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meyer, Brett', 18)}}的其他基金

Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Predicting Electric Vehicle Charging Station Usage from Historical Data
根据历史数据预测电动汽车充电站的使用情况
  • 批准号:
    543736-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
  • 批准号:
    418639-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
VECOS: Comprehensive Vulnerability Analysis and Mitigation Development Framework for Vehicular Communication Systems
VECOS:车辆通信系统综合漏洞分析和缓解开发框架
  • 批准号:
    507155-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
  • 批准号:
    418639-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
  • 批准号:
    418639-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
VACE: Vulnerability Assessment and Cost Estimation framework for cost-effective reliable system design
VACE:用于经济有效的可靠系统设计的漏洞评估和成本估算框架
  • 批准号:
    460795-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Plus Grants Program

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
COVID-19 Variant Network - Computer-aided discovery of synergistic drug combinations with Remdevisir for COVID-19 through mechanism-based drug repurposing and combinatorial organoid screening.
COVID-19 Variant Network - 通过基于机制的药物再利用和组合类器官筛选,计算机辅助发现与 Remdevisir 治疗 COVID-19 的协同药物组合。
  • 批准号:
    443064
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Operating Grants
Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Deep Convolutional Neural Network for Computer-Aided Diagnosis of Ischemic Heart Disease
缺血性心脏病计算机辅助诊断深度卷积神经网络的发展
  • 批准号:
    20K20233
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Lightweight 3D Deep Learning Network for Computer-Aided Diagnosis of Liver Lesions
用于肝脏病变计算机辅助诊断的轻量级 3D 深度学习网络
  • 批准号:
    20K21821
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structure-based Computer-Aided Drug Design with a Deep Neural Network Approach
采用深度神经网络方法的基于结构的计算机辅助药物设计
  • 批准号:
    19F19377
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Neural-Network-Aided Engineering: New Frontiers in Automation
神经网络辅助工程:自动化新领域
  • 批准号:
    RGPIN-2018-05668
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Piezoelectric Material Aided Electromagnetic and Mechanical Stimulation Bioreactor for Regeneration of Three Dimensional Nerve Network System
压电材料辅助电磁和机械刺激生物反应器用于三维神经网络系统的再生
  • 批准号:
    17H03150
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computer-Aided Design for a New Field-Programmable Gate Array Network-on-Chip Architecture
新型现场可编程门阵列片上网络架构的计算机辅助设计
  • 批准号:
    464750-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了