Evaluating the Operational Performance of Road Intersections by Mining Trajectory Data Streams
通过挖掘轨迹数据流评估道路交叉口的运营绩效
基本信息
- 批准号:530694-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traffic congestion describes a situation on transport networks that occurs when demand approaches the**capacity of a road (or of the intersections along the road). It is characterized by slower speeds, longer trip times,**and increased vehicle queues and is associated to significant social, economic and environmental costs. Road**intersections represent one of the most complex configurations encountered when traversing road networks and**a high percentage of accidents occur at these locations. It is therefore of vital importance to improve their**operational performance, as that can significantly contribute towards the efficiency of the whole transport**network. Traditional approaches to improve the efficiency of intersections are based on analysis of static data**or expert opinions. However, today's vehicles are no longer stand-alone transportation means. Due to the**advancements on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication technologies it**is possible to enhance safety and improve road intersection efficiency by continuously monitoring traffic**information and enabling situational awareness of vehicle drivers.**In this project, we aim to leverage big data mining and machine learning techniques to continuously monitor**the operational performance of road intersections through mining real-time V2I data. A key to the success of**these methods is the quality and timeliness of the analysis provided. The anticipated outcome of the research is**twofold: (i) an increased safety and efficiency of road intersections, and (ii) a data-driven approach to evaluate**road intersection operational performance.**The proposed research collaboration aligns with Canada's Innovation Agenda. Conducting research in the**intersection of big data analytics and machine learning has the potential to attract the brightest students from**around the world, while keeping domestic talent here.
交通拥堵描述的是交通网络中当需求接近道路(或道路沿线沿着)的通行能力时发生的情况。它的特点是速度较慢,行程时间较长,** 和车辆排队增加,并与重大的社会,经济和环境成本有关。道路 ** 交叉口是穿越道路网络时遇到的最复杂的配置之一,** 高比例的事故发生在这些位置。因此,改善其运营绩效至关重要,因为这可以大大提高整个运输网络的效率。传统的提高交叉口效率的方法是基于静态数据分析 ** 或专家意见。然而,今天的车辆不再是独立的运输工具。由于车对车(V2V)和车对基础设施(V2I)通信技术的进步,通过持续监控交通信息并使车辆驾驶员能够感知情况,可以提高安全性并提高道路交叉口的效率。在这个项目中,我们的目标是利用大数据挖掘和机器学习技术,通过挖掘实时V2I数据来持续监控道路交叉口的运营性能。* * 这些方法成功的关键是所提供分析的质量和及时性。该研究的预期成果是 ** 双重的:(i)提高道路交叉口的安全性和效率,以及(ii)数据驱动的方法来评估 ** 道路交叉口的运营性能。拟议的研究合作符合加拿大的创新议程。在大数据分析和机器学习的交叉领域进行研究,有可能吸引世界各地最聪明的学生,同时留住国内人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Papagelis, Manos其他文献
A method for estimating the precision of placename matching
- DOI:
10.1109/tkde.2007.1033 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:8.9
- 作者:
Doerr, Martin;Papagelis, Manos - 通讯作者:
Papagelis, Manos
OL-HEATMAP: Effective Density Visualization of Multiple Overlapping Rectangles
- DOI:
10.1016/j.bdr.2021.100235 - 发表时间:
2021-05-28 - 期刊:
- 影响因子:3.3
- 作者:
Costa, Niloy Eric;Pechlivanoglou, Tilemachos;Papagelis, Manos - 通讯作者:
Papagelis, Manos
BIM-based collaborative design and socio-technical analytics of green buildings
- DOI:
10.1016/j.autcon.2017.06.004 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:10.3
- 作者:
El-Diraby, Tamer;Krijnen, Thomas;Papagelis, Manos - 通讯作者:
Papagelis, Manos
Papagelis, Manos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Papagelis, Manos', 18)}}的其他基金
Deep Learning Models for Mobility Data Mining
用于移动数据挖掘的深度学习模型
- 批准号:
RGPIN-2022-04586 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Mining and Exploration of the Social Graph: Theory and Applications
社交图谱的挖掘与探索:理论与应用
- 批准号:
RGPIN-2017-05680 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Evaluating the Operational Performance of Road Intersections by Mining Trajectory Data Streams
通过挖掘轨迹数据流评估道路交叉口的运营绩效
- 批准号:
544429-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Engage Plus Grants Program
Ranking Experts in Location-aware Question-Answering Services
位置感知问答服务专家排名
- 批准号:
521777-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
相似海外基金
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Experimental Performance Characterisation and Measurement of Unstart Force on a Scramjet Intake across the Operational Envelope
超燃冲压发动机整个运行范围内进气口的启动力的实验性能表征和测量
- 批准号:
2887199 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226900 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
- 批准号:
2220811 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Cooperative Agreement
Application of data-science methods to improve decision-making and operational performance in complex groundwater environments
应用数据科学方法改善复杂地下水环境中的决策和运营绩效
- 批准号:
575530-2022 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Research on gaze control using Mixed Reality and operational performance improvement of welfare vehicles for the elderly
混合现实视线控制及老年福利车运行性能提升研究
- 批准号:
20K04353 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combining complex and disparate data sources to define and deploy leaner and smarter operational strategies to improve the performance of wind farms - Phase 2
结合复杂且不同的数据源来定义和部署更精简、更智能的运营策略,以提高风电场的性能 - 第 2 阶段
- 批准号:
105580 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
Evaluating the Operational Performance of Road Intersections by Mining Trajectory Data Streams
通过挖掘轨迹数据流评估道路交叉口的运营绩效
- 批准号:
544429-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Engage Plus Grants Program
Development of operational guidelines using objective evaluation criteria for the gas exchange performance of oxygenators
使用充氧器气体交换性能客观评估标准制定操作指南
- 批准号:
19K21548 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Operational Metric Trends of Table Performance Data
表性能数据的操作指标趋势
- 批准号:
521830-2017 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)














{{item.name}}会员




