Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks

学习自主移动机器人的表示以实现复杂的任务

基本信息

  • 批准号:
    RGPIN-2018-04653
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

*** We have seen dramatic investments in mobile robotics in recent years, and this is widely considered to be a field of great economic and social promise. The advances of general artificial intelligence (AI), and specifically machine learning (ML) have already yielded significant practical results that are impacting daily life, such as automated face recognition, language translation, and targeted marketing to name a few. However, endowing robots with such capabilities and deploying them in the real world is proving more challenging. But the opportunities for societal impact are significant. Mobile robotics is poised to transform society in the next 20 years in a similar way that industry automation has already in the last 20 years. We have seen limited examples of mobile robotics penetrating the consumer market, most notably applications such as vacuum cleaners and lawn mowers, but massive markets remain open, such as personal transportation, transportation of goods, home assistance and elder care to name a few. *** One of the core capabilities for any autonomous mobile robot is to be able to perceive the world. This requires amalgamating the stream of sensor data that it is collecting into one coherent and consistent representation. This representation should be rich enough to support the types of tasks that the robot is trying to accomplish. Traditionally, these representations have included little more than geometrical information about the world, and consequently the complexity of the tasks that a robot is capable of achieving have been quite limited. The overall objective of this research program is to develop novel representations that will enable robots to achieve more complex tasks.*** Recent advances in AI and ML have shown incredible promise. However, the robotics use-case has unique requirements, such as: real-time operation, robustness to incorrect data and failures, scalability, and the ability to understand why a robot took a certain action for safety reasons. Specifically, in this work I will investigate new representations that contain higher level semantic information and statistics about the temporal variability of the world. I will also pay special attention the scalability and real-time requirements of these algorithms as they relate to the available onboard resources.*** This will be achieved by leveraging deep learning to provide the data-preprocessing in the form of object detections and semantic segmentations. Additionally, the allocation of resources such as computation, memory, and bandwidth, must be done in a way that maximizes the probability of successfully achieving the stated task*** Robotics has the potential to impact society in a profound way. For this to become a reality requires that robots are safe, robust, and reliable. Achieving these goals requires that robots have a more profound understanding of their surroundings, and that their algorithms are able to scale well.**
* 近年来,我们看到了对移动的机器人技术的巨大投资,这被广泛认为是一个具有巨大经济和社会前景的领域。一般人工智能(AI),特别是机器学习(ML)的进步已经产生了影响日常生活的重大实际成果,例如自动人脸识别,语言翻译和有针对性的营销等等。然而,赋予机器人这种能力并将其部署在真实的世界中被证明更具挑战性。但产生社会影响的机会是巨大的。移动的机器人技术将在未来20年内改变社会,就像工业自动化在过去20年里已经改变的那样。我们已经看到移动的机器人技术渗透到消费市场的有限例子,最引人注目的应用是吸尘器和割草机,但大规模的市场仍然开放,如个人交通,货物运输,家庭援助和老年人护理等等。* 任何自主移动的机器人的核心能力之一是能够感知世界。这需要将它收集的传感器数据流合并成一个连贯一致的表示。这种表示应该足够丰富,以支持机器人试图完成的任务类型。传统上,这些表示只包括关于世界的几何信息,因此机器人能够实现的任务的复杂性非常有限。该研究计划的总体目标是开发新的表示方法,使机器人能够完成更复杂的任务。AI和ML的最新进展显示出令人难以置信的前景。然而,机器人用例具有独特的要求,例如:实时操作,对错误数据和故障的鲁棒性,可扩展性,以及理解机器人出于安全原因采取特定行动的能力。具体来说,在这项工作中,我将研究新的表示,包含更高层次的语义信息和统计的时间变化的世界。我还将特别关注这些算法的可扩展性和实时要求,因为它们与可用的机载资源有关。这将通过利用深度学习以对象检测和语义分割的形式提供数据预处理来实现。此外,计算、内存和带宽等资源的分配必须以最大限度地提高成功完成既定任务的概率的方式进行 * 机器人技术有可能以深刻的方式影响社会。要实现这一点,机器人必须安全、坚固和可靠。实现这些目标需要机器人对周围环境有更深刻的理解,并且它们的算法能够很好地扩展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paull, Liam其他文献

AUV Navigation and Localization: A Review
  • DOI:
    10.1109/joe.2013.2278891
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Paull, Liam;Saeedi, Sajad;Li, Howard
  • 通讯作者:
    Li, Howard
Deep Active Localization
  • DOI:
    10.1109/lra.2019.2932575
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Gottipati, Sai Krishna;Seo, Keehong;Paull, Liam
  • 通讯作者:
    Paull, Liam
Map merging for multiple robots using Hough peak matching
  • DOI:
    10.1016/j.robot.2014.06.002
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Saeedi, Sajad;Paull, Liam;Li, Howard
  • 通讯作者:
    Li, Howard
Sensor-Driven Online Coverage Planning for Autonomous Underwater Vehicles
  • DOI:
    10.1109/tmech.2012.2213607
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Paull, Liam;Saeedi, Sajad;Li, Howard
  • 通讯作者:
    Li, Howard

Paull, Liam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paull, Liam', 18)}}的其他基金

Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    DGECR-2018-00304
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Acoustic Noise Reduction in Power Converters
电源转换器中的声学降噪
  • 批准号:
    392690-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Acoustic Noise Reduction in Power Converters
电源转换器中的声学降噪
  • 批准号:
    392690-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Aggregate Load Control of Domestic Hot Water Heaters with Smart Meters
使用智能电表控制家用热水器的总负荷
  • 批准号:
    361075-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Master's

相似海外基金

Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
  • 批准号:
    MR/Y033884/1
  • 财政年份:
    2025
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
  • 批准号:
    2401384
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
  • 批准号:
    2337451
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Unlocking the secrets of modular representations
解开模块化表示的秘密
  • 批准号:
    FL230100256
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Australian Laureate Fellowships
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
  • 批准号:
    24K00093
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding mental health in the UK welfare system: representations of distress among benefit claimants and implications for assessment and support
了解英国福利体系中的心理健康:福利申请人的痛苦表现以及对评估和支持的影响
  • 批准号:
    ES/X002101/2
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
  • 批准号:
    2339071
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
  • 批准号:
    2401114
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了