Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks

学习自主移动机器人的表示以实现复杂的任务

基本信息

  • 批准号:
    RGPIN-2018-04653
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

We have seen dramatic investments in mobile robotics in recent years, and this is widely considered to be a field of great economic and social promise. The advances of general artificial intelligence (AI), and specifically machine learning (ML) have already yielded significant practical results that are impacting daily life, such as automated face recognition, language translation, and targeted marketing to name a few. However, endowing robots with such capabilities and deploying them in the real world is proving more challenging. But the opportunities for societal impact are significant. Mobile robotics is poised to transform society in the next 20 years in a similar way that industry automation has already in the last 20 years. We have seen limited examples of mobile robotics penetrating the consumer market, most notably applications such as vacuum cleaners and lawn mowers, but massive markets remain open, such as personal transportation, transportation of goods, home assistance and elder care to name a few. One of the core capabilities for any autonomous mobile robot is to be able to perceive the world. This requires amalgamating the stream of sensor data that it is collecting into one coherent and consistent representation. This representation should be rich enough to support the types of tasks that the robot is trying to accomplish. Traditionally, these representations have included little more than geometrical information about the world, and consequently the complexity of the tasks that a robot is capable of achieving have been quite limited. The overall objective of this research program is to develop novel representations that will enable robots to achieve more complex tasks. Recent advances in AI and ML have shown incredible promise. However, the robotics use-case has unique requirements, such as: real-time operation, robustness to incorrect data and failures, scalability, and the ability to understand why a robot took a certain action for safety reasons. Specifically, in this work I will investigate new representations that contain higher level semantic information and statistics about the temporal variability of the world. I will also pay special attention the scalability and real-time requirements of these algorithms as they relate to the available onboard resources. This will be achieved by leveraging deep learning to provide the data-preprocessing in the form of object detections and semantic segmentations. Additionally, the allocation of resources such as computation, memory, and bandwidth, must be done in a way that maximizes the probability of successfully achieving the stated task Robotics has the potential to impact society in a profound way. For this to become a reality requires that robots are safe, robust, and reliable. Achieving these goals requires that robots have a more profound understanding of their surroundings, and that their algorithms are able to scale well.
近年来,我们在移动机器人领域看到了巨大的投资,这被广泛认为是一个具有巨大经济和社会前景的领域。通用人工智能(AI),特别是机器学习(ML)的进步已经产生了影响日常生活的重大实际成果,例如自动人脸识别,语言翻译和目标营销等等。然而,赋予机器人这样的能力并将它们部署到现实世界中更具挑战性。但产生社会影响的机会是巨大的。移动机器人将在未来20年改变社会,就像工业自动化在过去20年里所做的那样。我们已经看到了移动机器人进入消费市场的有限例子,最明显的应用是吸尘器和割草机,但巨大的市场仍然开放,如个人交通、货物运输、家庭辅助和老年人护理等等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paull, Liam其他文献

AUV Navigation and Localization: A Review
  • DOI:
    10.1109/joe.2013.2278891
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Paull, Liam;Saeedi, Sajad;Li, Howard
  • 通讯作者:
    Li, Howard
Deep Active Localization
  • DOI:
    10.1109/lra.2019.2932575
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Gottipati, Sai Krishna;Seo, Keehong;Paull, Liam
  • 通讯作者:
    Paull, Liam
Map merging for multiple robots using Hough peak matching
  • DOI:
    10.1016/j.robot.2014.06.002
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Saeedi, Sajad;Paull, Liam;Li, Howard
  • 通讯作者:
    Li, Howard
Sensor-Driven Online Coverage Planning for Autonomous Underwater Vehicles
  • DOI:
    10.1109/tmech.2012.2213607
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Paull, Liam;Saeedi, Sajad;Li, Howard
  • 通讯作者:
    Li, Howard

Paull, Liam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paull, Liam', 18)}}的其他基金

Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    RGPIN-2018-04653
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
  • 批准号:
    DGECR-2018-00304
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Acoustic Noise Reduction in Power Converters
电源转换器中的声学降噪
  • 批准号:
    392690-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Acoustic Noise Reduction in Power Converters
电源转换器中的声学降噪
  • 批准号:
    392690-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Aggregate Load Control of Domestic Hot Water Heaters with Smart Meters
使用智能电表控制家用热水器的总负荷
  • 批准号:
    361075-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Master's

相似海外基金

Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
  • 批准号:
    MR/Y033884/1
  • 财政年份:
    2025
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
  • 批准号:
    2401384
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
  • 批准号:
    2337451
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Unlocking the secrets of modular representations
解开模块化表示的秘密
  • 批准号:
    FL230100256
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Australian Laureate Fellowships
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
  • 批准号:
    24K00093
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
  • 批准号:
    2339071
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
  • 批准号:
    2401114
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
  • 批准号:
    2336998
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了