Land Classification Using SAR Imagery********
使用 SAR 图像进行土地分类********
基本信息
- 批准号:537412-2018
- 负责人:
- 金额:$ 1.74万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on land classification using Synthetic Aperture Radar imagery provided by MDA Corporation. Radar imaging systems are based on the echo principle: an antenna emits a coherent beam of microwave radiation, which is absorbed, reflected, and backscattered by the Earth's surface. The backscattered portion of the signal is received by the antenna and processed to form an image. The produced image is noisier than optical images but can provide additional information that cannot be easily obtained by optical images. So far MDA Corporation has used the SAR images produced by its satellites with simple pattern recognition methods based on low level image processing. Now, considering the breaking through of deep learning on many different applications, MDA Corporation is interested in evaluating the performance of deep learning models on SAR images. Thus, the aim of this project is to develop, adapt and evaluate the most promising deep learning models for optical images (e.g. Convolutional Neural Networks) on SAR images for land classification.**This project aims to provide MDA with expertise and engineering solutions in order to evaluate the recognition performance of a convolutional neural network. MDA will provide knowledge and know how on SAR images as well as training and validation data. The combination of the data provided by MDA and their expertise on SAR images together with the expertise of my group on visual recognition will provide MDA with excellent conditions to start a new and promising line of research on high-performance recognition on SAR images. ********
该项目的重点是利用MDA公司提供的合成孔径雷达图像进行土地分类。雷达成像系统基于回波原理:天线发射微波辐射的相干波束,该波束被地球表面吸收、反射和反向散射。信号的后向散射部分由天线接收并处理以形成图像。所产生的图像比光学图像噪声更大,但可以提供光学图像无法容易获得的附加信息。迄今为止,MDA公司使用的是其卫星产生的SAR图像,其模式识别方法是基于低级图像处理的简单方法。现在,考虑到深度学习在许多不同应用上的突破,MDA公司有兴趣评估深度学习模型在SAR图像上的性能。因此,该项目的目的是开发、调整和评估最有前途的深度学习模型,用于SAR图像上的光学图像(例如卷积神经网络),以进行土地分类。该项目旨在为MDA提供专业知识和工程解决方案,以评估卷积神经网络的识别性能。MDA将提供有关SAR图像的知识和技术以及培训和验证数据。MDA提供的数据和他们在SAR图像上的专业知识与我的视觉识别小组的专业知识相结合,将为MDA提供极好的条件,开始一个新的和有前途的SAR图像高性能识别研究。********
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedersoli, Marco其他文献
Deep Clustering: On the Link Between Discriminative Models and K-Means
- DOI:
10.1109/tpami.2019.2962683 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:23.6
- 作者:
Jabi, Mohammed;Pedersoli, Marco;Ayed, Ismail Ben - 通讯作者:
Ayed, Ismail Ben
Combining where and what in change detection for unsupervised foreground learning in surveillance
- DOI:
10.1016/j.patcog.2014.09.023 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:8
- 作者:
Huerta, Ivan;Pedersoli, Marco;Sanfeliu, Albert - 通讯作者:
Sanfeliu, Albert
Pedersoli, Marco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedersoli, Marco', 18)}}的其他基金
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
- 批准号:
RGPIN-2018-04825 - 财政年份:2022
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
- 批准号:
RGPIN-2018-04825 - 财政年份:2021
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
- 批准号:
RGPIN-2018-04825 - 财政年份:2020
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
- 批准号:
RGPIN-2018-04825 - 财政年份:2019
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
- 批准号:
DGECR-2018-00267 - 财政年份:2018
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Launch Supplement
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
- 批准号:
RGPIN-2018-04825 - 财政年份:2018
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
- 批准号:
2905969 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Studentship
Simplified Evaluation for Nonlinear Amplification Characteristics of Surface Layer Using Engineering Geomorphologic Classification
利用工程地貌分类简化地表层非线性放大特性评价
- 批准号:
23K04003 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-criteria decision analysis using 1000Minds to develop consensus weights for classification criteria for scleroderma renal crisis
使用 1000Minds 进行多标准决策分析,制定硬皮病肾危象分类标准的共识权重
- 批准号:
487943 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Miscellaneous Programs
Construction of a motor imagery EEG classification system for finger movements using phase
使用相位构建手指运动运动想象脑电图分类系统
- 批准号:
23K11178 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cognitive Domains Classification Using fNIRS-EEG
使用 fNIRS-EEG 进行认知域分类
- 批准号:
10742003 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Historical Building Classification Learning System using "Reward" Indicators based on Machine Learning
基于机器学习的使用“奖励”指标的历史建筑分类学习系统
- 批准号:
23K16903 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Building engagement in a classification data-analysis, citizen science video game using Self-Determination Theory's intrinsic and extrinsic motivator
利用自决理论的内在和外在动机建立对分类数据分析、公民科学视频游戏的参与
- 批准号:
2890021 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Studentship
Integrating periodontitis assessment in medical research using computationallyenhanced classification
使用计算增强分类将牙周炎评估纳入医学研究
- 批准号:
10901243 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Low-Power AI Using Light Wave Diffraction -Massively Parallel Processing of Multi-Class Classification with Preserved Location Information of Objects-
使用光波衍射的低功耗人工智能 - 保留物体位置信息的多类分类的大规模并行处理 -
- 批准号:
23K11258 - 财政年份:2023
- 资助金额:
$ 1.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
- 批准号:
10371559 - 财政年份:2022
- 资助金额:
$ 1.74万 - 项目类别:














{{item.name}}会员




