Efficient visual learning with reduced supervision

有效的视觉学习,减少监督

基本信息

  • 批准号:
    RGPIN-2018-04825
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

We are currently witnessing an incredible demand for the detection and recognition of visual objects in real-world systems and applications, such as portable devices and moving vehicles. Visual recognition is at once the key and the limitation towards the next generation of intelligent applications, such as autonomous driving, robotics in unconstrained environments and augmented reality. Recognition models are all currently based on a learning paradigm in which training data (i.e. examples) are provided to machines to automatically perform a complex task. This data-based approach to machine learning is particularly timely given the increasingly vast amount of information being generated and shared over the internet.Modern machine learning algorithms such as deep convolutional neural networks can leverage massive amounts of data as training examples. However, two main challenges must be addressed:i) Current state-of-the-arts methods in visual recognition/learning are based on powerful brute-force approaches, which do not reason about when and how to use the available computation. The high computational cost of these techniques is then the limiting factor for learning with massive data and for deploying these recognition algorithms on computation-limited platforms, such as embedded and low power devices.ii) Standard learning algorithms require not only training samples (input), but also the corresponding annotations or labels (output). Given that the available "Big Data" are equipped with little to no annotation, experts are required to perform an additional annotation step (supervision) to leverage it for learning. Thus, in these conditions, supervised annotation of training data often becomes one of the bottlenecks for learning on Big Data, in terms of both cost and feasibility.The primary contribution of my research will be to develop computationally efficient methods for visual learning with reduced supervision. This research will focus on an in-depth study of the properties of data and algorithms that allow intelligent and efficient learning with reduced annotations. This will include: i) efficient techniques for visual learning and inference, ii) learning with reduced supervision, iii) visual data exploration.This research is highly relevant and applicable to visual recognition tasks in various data modalities, including images (object classification, localization, segmentation), videos (action recognition and sentiment analysis), and text (document analysis and language modelling).I expect that my future research can lead to effective and robust visual learning with reduced supervision. Long term, I expect that in this era of "Big Data", learning efficiently and with reduced supervision will be a key factor to further develop machine learning techniques in widespread applications.
在便携式设备和移动车辆等现实系统和应用中,我们目前看到了对视觉对象检测和识别的令人难以置信的需求。视觉识别既是下一代智能应用的关键,也是下一代智能应用的限制,如自动驾驶、无约束环境中的机器人和增强现实。识别模型目前都基于学习范例,其中训练数据(即示例)被提供给机器以自动执行复杂任务。这种基于数据的机器学习方法特别及时,因为互联网上产生和共享的信息量越来越大。现代机器学习算法,如深度卷积神经网络,可以利用大量数据作为训练样本。然而,必须解决两个主要挑战:i)当前视觉识别/学习中最先进的方法是基于强大的蛮力方法,这些方法不会推理何时以及如何使用可用的计算。这些技术的高计算成本是在海量数据下学习和在计算有限的平台上部署这些识别算法的限制因素,例如嵌入式和低功耗设备。ii)标准学习算法不仅需要训练样本(输入),而且还需要相应的注释或标签(输出)。鉴于可用的“大数据”几乎没有注释,专家需要执行额外的注释步骤(监督),以利用它进行学习。因此,在这种情况下,训练数据的有监督标注往往成为大数据学习的成本和可行性的瓶颈之一。我的研究的主要贡献将是在减少监督的情况下开发计算高效的视觉学习方法。这项研究将专注于深入研究数据和算法的属性,以便在减少注释的情况下进行智能和高效的学习。这将包括:i)高效的视觉学习和推理技术,ii)减少监督的学习,iii)视觉数据探索。这项研究高度相关并适用于各种数据形式的视觉识别任务,包括图像(对象分类、定位、分割)、视频(动作识别和情感分析)和文本(文档分析和语言建模)。我希望我未来的研究可以在减少监督的情况下导致有效和健壮的视觉学习。从长远来看,我预计在这个大数据时代,高效学习和减少监管将是进一步发展机器学习技术在广泛应用中的关键因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedersoli, Marco其他文献

Deep Clustering: On the Link Between Discriminative Models and K-Means
Combining where and what in change detection for unsupervised foreground learning in surveillance
  • DOI:
    10.1016/j.patcog.2014.09.023
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Huerta, Ivan;Pedersoli, Marco;Sanfeliu, Albert
  • 通讯作者:
    Sanfeliu, Albert

Pedersoli, Marco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedersoli, Marco', 18)}}的其他基金

Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    DGECR-2018-00267
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Land Classification Using SAR Imagery********
使用 SAR 图像进行土地分类********
  • 批准号:
    537412-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program

相似国自然基金

引入昆虫复视机制的粒子滤波算法及其视觉伺服应用研究
  • 批准号:
    61175096
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
情感与视觉记忆:它们的相互作用及神经环路研究
  • 批准号:
    91132302
  • 批准年份:
    2011
  • 资助金额:
    300.0 万元
  • 项目类别:
    重大研究计划
基于图像的Visuall Hull的立体感实时绘制及其高速图形处理硬件(GPU)的实现机制
  • 批准号:
    60573149
  • 批准年份:
    2005
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
基于多幅图象的Visual Hull重构及表面属性建模算法研究
  • 批准号:
    60373031
  • 批准年份:
    2003
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment
传播高效 CT 辐射剂量优化和诊断性能评估的软件平台
  • 批准号:
    10445244
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment
传播高效 CT 辐射剂量优化和诊断性能评估的软件平台
  • 批准号:
    10019348
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment
传播高效 CT 辐射剂量优化和诊断性能评估的软件平台
  • 批准号:
    10187567
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment
传播高效 CT 辐射剂量优化和诊断性能评估的软件平台
  • 批准号:
    10631960
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    DGECR-2018-00267
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: NCS-FO: Learning Efficient Visual Representations From Realistic Environments Across Time Scales
合作研究:NCS-FO:从跨时间尺度的现实环境中学习高效的视觉表示
  • 批准号:
    1837827
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了