Inference and Scaling in Stochastic Dynamical Systems

随机动力系统中的推理和缩放

基本信息

  • 批准号:
    RGPIN-2014-05716
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Dynamical systems are a ubiquitous feature of our world: from the small (the motions of single atoms) to the large (galactic dynamics), from the concrete (foraging patterns of ants) to the abstract (flow of information on the internet), from the quick (neural impulses) to the slow (evolutionary trajectories of different species' genomes). Being able to understand such systems is crucial to fields as diverse as biology, chemistry, physics, economics, engineering, and, not least, computer science. My research focuses on computational methods for the analysis and estimation of dynamical systems, particularly stochastic dynamical systems. The current proposal focuses on two recent problems on which my lab has made important breakthroughs: characterizing path distributions for discrete-state discrete-time stochastic systems (Markov chains), and inference of maximum-probability paths for discrete-state continuous-time stochastic systems (continuous-time Markov chains). **On the path distribution problem, we recently clarified and improved upon a 50-year old conjecture by Mandelbrot by proving necessary and sufficient conditions for the distribution of paths generated by a Markov chain to be powerlaw. We also showed that finite and stretched-exponential distributions are possible, with the distribution type depending only on the structure of possible state transitions, and not on the exact transition probabilities. We developed graph-theoretic computations to discriminate between the cases, and efficient eigenvalue / dynamic programming computations to determine distribution parameters. In this proposal, we will investigate the uses of our theory for model selection. In the case that empirical scaling of the path distribution is observed and a Markov model needs to be estimated from the data, how can we incorporate scaling information into the model estimation process? We will also work to extend our results to more sophisticated models of sequential data--in particular, stochastic context-free grammars, which are relevant to the analysis of natural language, music, genome structure, and many other complex real-world systems.**For the path inference problem, we have recently developed an approach called State Sequence Analysis for identifying the most probable sequences of states visited by a continuous-time Markov chain over some period of time. Using this approach, we obtained novel insights into a number of domains, including stochastic protein folding, the evolution of drug-resistance mutations in HIV, and ion channel dynamics. In the present proposal, we will seek to extend our results to noisy / partial observation models, as well as more general forms of waiting-time distributions in the states of the system. This will allow State Sequence Analysis to be applied to a much wider range of target domains.
动力系统是我们世界的一个普遍特征:从小(单个原子的运动)到大(银河系动力学),从具体(蚂蚁的觅食模式)到抽象(互联网上的信息流),从快(神经冲动)到慢(不同物种基因组的进化轨迹)。 能够理解这样的系统对于生物学、化学、物理学、经济学、工程学以及计算机科学等不同领域都至关重要。 我的研究重点是计算方法的分析和估计的动力系统,特别是随机动力系统。 目前的建议集中在两个最近的问题上,我的实验室已经取得了重要的突破:离散状态离散时间随机系统(马尔可夫链)的路径分布特征,和离散状态连续时间随机系统(连续时间马尔可夫链)的最大概率路径的推断。** 在路径分布问题上,我们最近澄清并改进了Mandelbrot的一个50年前的猜想,证明了马尔可夫链生成的路径分布是幂律分布的充分必要条件。我们还表明,有限和拉伸指数分布是可能的,与分布类型仅取决于可能的状态转移的结构,而不是确切的转移概率。我们开发了图论计算来区分的情况下,和有效的特征值/动态规划计算,以确定分布参数。在这个提议中,我们将研究我们的理论在模型选择中的应用。在观察到路径分布的经验标度并且需要从数据中估计马尔可夫模型的情况下,我们如何将标度信息纳入模型估计过程中?我们还将努力将我们的结果扩展到更复杂的序列数据模型-特别是随机上下文无关语法,这与自然语言,音乐,基因组结构和许多其他复杂的现实世界系统的分析有关。对于路径推理问题,我们最近开发了一种称为状态序列分析的方法,用于识别连续时间马尔可夫链在一段时间内访问的状态的最可能序列。 使用这种方法,我们获得了一些领域的新见解,包括随机蛋白质折叠,HIV耐药突变的演变和离子通道动力学。在本提案中,我们将寻求将我们的结果扩展到噪声/部分观测模型,以及系统状态中更一般形式的等待时间分布。这将允许状态序列分析应用于更广泛的目标域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Perkins, Theodore其他文献

Human gene expression variability and its dependence on methylation and aging
  • DOI:
    10.1186/s12864-019-6308-7
  • 发表时间:
    2019-12-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Bashkeel, Nasser;Perkins, Theodore;Lee, Jonathan
  • 通讯作者:
    Lee, Jonathan

Perkins, Theodore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Perkins, Theodore', 18)}}的其他基金

Improving detection in high-throughput sequencing data with gene/locus-specific models
使用基因/位点特异性模型改进高通量测序数据的检测
  • 批准号:
    RGPIN-2019-06604
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Improving detection in high-throughput sequencing data with gene/locus-specific models
使用基因/位点特异性模型改进高通量测序数据的检测
  • 批准号:
    RGPIN-2019-06604
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Improving detection in high-throughput sequencing data with gene/locus-specific models
使用基因/位点特异性模型改进高通量测序数据的检测
  • 批准号:
    RGPIN-2019-06604
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Improving detection in high-throughput sequencing data with gene/locus-specific models
使用基因/位点特异性模型改进高通量测序数据的检测
  • 批准号:
    RGPIN-2019-06604
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and Scaling in Stochastic Dynamical Systems
随机动力系统中的推理和缩放
  • 批准号:
    RGPIN-2014-05716
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and Scaling in Stochastic Dynamical Systems
随机动力系统中的推理和缩放
  • 批准号:
    RGPIN-2014-05716
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and Scaling in Stochastic Dynamical Systems
随机动力系统中的推理和缩放
  • 批准号:
    RGPIN-2014-05716
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and Scaling in Stochastic Dynamical Systems
随机动力系统中的推理和缩放
  • 批准号:
    RGPIN-2014-05716
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Systems biology and biological information processing
系统生物学与生物信息处理
  • 批准号:
    328154-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Systems biology and biological information processing
系统生物学与生物信息处理
  • 批准号:
    328154-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
  • 批准号:
    23KK0050
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    DGECR-2020-00361
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Launch Supplement
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Partial Differential Equations, Gauge Theories, and Scaling Limits
随机偏微分方程、规范理论和标度极限
  • 批准号:
    1954091
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Discretization and scaling limit for problems of stochastic calculus of variations
随机变分问题的离散化和标度极限
  • 批准号:
    18K03343
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
  • 批准号:
    1909525
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
  • 批准号:
    1712684
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了