Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
基本信息
- 批准号:1712684
- 负责人:
- 金额:$ 14.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In modern physics and other areas of science many problems have random components and are modeled by equations or systems of equations that are probabilistic. An important part of understanding the physics is knowing whether, or under what conditions, these equations have solutions. The principal investigator will further develop methods to study these types of equations. He will also organize conferences and develop courses on this topic. Stochastic partial differential equations (SPDEs) arise from extremely important models in areas such as statistical physics, quantum field theory and fluid mechanics. Solving these equations, including proving existence and uniqueness of their solutions, is exceedingly difficult. This is often due to the presence of very singular random forcing, as well as nonlinearities. Various solution theories were established based on different approaches, the most powerful of which is the theory of regularity structures introduced by Hairer around 2013 and further developed by the PI and a few other authors since then. This research will apply the theory, combined with ideas from other areas such as quantum field theory to investigate more SPDE problems. The PI will provide solutions to new important examples of SPDEs, including equations with gauge symmetry and the sine-Gordon equation near criticality. The PI also plans to prove scaling limit results for these singular SPDEs. In particular the PI will study convergence of discrete systems, such as the Glauber dynamics of ferromagnetic systems and directed polymers in random media, to the solutions to these SPDEs in various scaling regimes. The PI will also organize conferences and develop courses to disseminate this research.
在现代物理学和其他科学领域中,许多问题都有随机成分,并由概率方程或方程组建模。理解物理学的一个重要部分是知道这些方程是否有解,或者在什么条件下有解。首席研究员将进一步开发研究这些类型方程的方法。他还将组织会议,并制定有关这一主题的课程。 随机偏微分方程(SPDE)起源于统计物理、量子场论和流体力学等领域中极其重要的模型。求解这些方程,包括证明其解的存在性和唯一性,是极其困难的。这通常是由于存在非常奇异的随机强迫以及非线性。基于不同的方法建立了各种解决方案理论,其中最强大的是Hairer在2013年左右引入的规则性结构理论,并由PI和其他一些作者进一步发展。本研究将应用该理论,结合量子场论等其他领域的思想,研究更多的SPDE问题。PI将提供新的重要的例子SPDE的解决方案,包括规范对称方程和正弦戈登方程临界附近。PI还计划证明这些奇异SPDE的缩放极限结果。特别是PI将研究离散系统的收敛性,例如铁磁系统的Glauber动力学和随机介质中的定向聚合物,这些SPDE在各种缩放制度中的解决方案。PI还将组织会议和开发课程,以传播这项研究。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic telegraph equation limit for the stochastic six vertex model
随机六顶点模型的随机电报方程极限
- DOI:10.1090/proc/14415
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Shen, Hao;Tsai, Li-Cheng
- 通讯作者:Tsai, Li-Cheng
Stochastic PDE Limit of the Six Vertex Model
六顶点模型的随机偏微分方程极限
- DOI:10.1007/s00220-019-03678-z
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Corwin, Ivan;Ghosal, Promit;Shen, Hao;Tsai, Li-Cheng
- 通讯作者:Tsai, Li-Cheng
Open ASEP in the Weakly Asymmetric Regime
- DOI:10.1002/cpa.21744
- 发表时间:2016-10
- 期刊:
- 影响因子:3
- 作者:Ivan Corwin;Hao Shen
- 通讯作者:Ivan Corwin;Hao Shen
Moment bounds for SPDEs with non-Gaussian fields and application to the Wong-Zakai problem
- DOI:10.1214/17-ejp84
- 发表时间:2016-05
- 期刊:
- 影响因子:0
- 作者:A. Chandra;Hao Shen
- 通讯作者:A. Chandra;Hao Shen
Scaling limit of a directed polymer among a Poisson field of independent walks
独立游走泊松场中定向聚合物的缩放极限
- DOI:10.1016/j.jfa.2021.109066
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Shen, Hao;Song, Jian;Sun, Rongfeng;Xu, Lihu
- 通讯作者:Xu, Lihu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Shen其他文献
Passivity-based fault-tolerant synchronization control of chaotic neuralbr / networks against actuator faults using the semi-Markov jumpbr / model approach
使用半马尔可夫跳跃模型方法对混沌神经网络进行基于无源容错同步控制以对抗执行器故障
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:6
- 作者:
Jing Wang;Hao Shen - 通讯作者:
Hao Shen
Generalised dissipative asynchronous output feedback control for Markov jump repeated scalar non-linear systems with time-varying delay
时变时滞马尔可夫跳重复标量非线性系统的广义耗散异步输出反馈控制
- DOI:
10.1049/iet-cta.2018.6114 - 发表时间:
2019 - 期刊:
- 影响因子:2.6
- 作者:
Jing Wang;Shicheng Huo;Jianwei Xia;Ju H. Park;Xia Huang;Hao Shen - 通讯作者:
Hao Shen
Development of efficient fabrication process of metallic nanostructures for optical functional surfaces
光学功能表面金属纳米结构高效制造工艺的开发
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hao Shen;Masahiko Yoshino;Motoki Terano - 通讯作者:
Motoki Terano
Fuzzy-model-based H_infinity control for Markov jump nonlinear slow sampling singularly perturbed systems with partial information
部分信息马尔可夫跳跃非线性慢采样奇摄动系统基于模糊模型的H_infinity控制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:11.9
- 作者:
Feng Li;Shengyuan Xu;Hao Shen - 通讯作者:
Hao Shen
Exponential H∞ Filtering for Continuous-Time Switched Neural Networks Under Persistent Dwell-Time Switching Regularity
持续停留时间切换规律下连续时间切换神经网络的指数 H 滤波
- DOI:
10.1109/tcyb.2019.2901867 - 发表时间:
2020-06 - 期刊:
- 影响因子:11.8
- 作者:
Hao Shen;Zhengguo Huang;Jinde Cao;Ju H. Park - 通讯作者:
Ju H. Park
Hao Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Shen', 18)}}的其他基金
CAREER: Properties of Solutions to Singular Stochastic Partial Differential Equations from Quantum Field Theory
职业:量子场论奇异随机偏微分方程解的性质
- 批准号:
2044415 - 财政年份:2021
- 资助金额:
$ 14.53万 - 项目类别:
Continuing Grant
Stochastic Partial Differential Equations, Gauge Theories, and Scaling Limits
随机偏微分方程、规范理论和标度极限
- 批准号:
1954091 - 财政年份:2020
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
- 批准号:
1909525 - 财政年份:2018
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
相似海外基金
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 14.53万 - 项目类别:
Research Grant
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
- 批准号:
24K00237 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
- 批准号:
2349052 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
CAREER: Evaluating Theories of Polymer Crystallization by Directly Calculating the Nucleation Barrier in a Polymer Melt
职业:通过直接计算聚合物熔体中的成核势垒来评估聚合物结晶理论
- 批准号:
2338690 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Continuing Grant
RAPID: Antecedents and Consequences of Disaster-Related Conspiracy Theories
RAPID:灾难相关阴谋论的前因和后果
- 批准号:
2326644 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Testing alternative theories of gravity in strong gravitational field by searching for gravitational-wave polarization from compact binary coalescences
通过从致密双星聚结中寻找引力波偏振来测试强引力场中的替代引力理论
- 批准号:
22KJ1650 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Fellowship
Clarifying Sociological Theories' Views on Language and Their Contemporary Social Backgrounds: From a Perspective of the Integration Problem of Postwar National Societies
厘清社会学理论的语言观及其当代社会背景:战后国家社会整合问题的视角
- 批准号:
23H00875 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




