Representations, Inference and Learning for Complex Decision Making Under Uncertainty

不确定性下复杂决策的表示、推理和学习

基本信息

  • 批准号:
    RGPIN-2016-03858
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This proposal is about decision making under uncertainty in domains where there are rich relational descriptions, such as making treatment decisions about medical patients conditioned on the detailed observations in their electronic health records, or making a decision about prospecting in a geographic region conditioned on a description of the local geology. Building on recent progress in statistical relational AI, probabilistic programming, ontological reasoning and preference elicitation, the aim of this proposal is to design a coherent expressive framework for reasoning and decision making under uncertainty.******The mix of probabilistic models with relational models has become known as statistical relational AI. These models specify both the logical structure (in terms of quantified logical variables) and the probabilistic structure (in terms of conditional independence). The problem of exploiting both, called lifted inference has recently been essentially solved for the exact undirected relational case by a number of research teams. Part of this proposal is to build on the recent successors to build the next generation of relational probabilistic systems with expressive representations, efficient inference and robust learning. We will also further advance exact inference, which will also enable new ways to do efficient approximate inference.******Recently there has been an explosion of scientific and government data being published with the vocabulary defined by formal ontologies. We will work on representing, reasoning and learning hypotheses that interoperate with heterogeneous data sets and rich ontologies. There are exciting challenges that arise when defining multiple hypotheses at various levels of abstraction and detail that make predictions on multiple heterogeneous data sets.******Ultimately these models are used to make decisions. The other part of making decisions is utilities. We will also work on preference elicitation for utility models that interact with the relational models and ontologies, and are understandable by decision makers.******Our work will build on ongoing collaboration with real-world decision makers in geology, computational sustainability, and medicine. This proposal is to develop the computational foundations to make such applications feasible.***********
这项建议是关于在具有丰富关系描述的领域的不确定性下的决策,例如根据患者电子健康记录中的详细观察来做出关于患者的治疗决策,或者根据对当地地质的描述来做出关于在地理区域进行勘探的决策。基于统计关系人工智能、概率规划、本体论推理和偏好诱导的最新进展,该建议的目的是为不确定情况下的推理和决策设计一个连贯的表达框架。*概率模型和关系模型的混合被称为统计关系人工智能。这些模型规定了逻辑结构(根据量化的逻辑变量)和概率结构(根据条件独立性)。利用两者的问题被称为提升推理,最近许多研究团队基本上解决了确切的非定向关系情况。该建议的一部分是建立在最近的继任者的基础上,以建立具有表达能力、高效推理和稳健学习的下一代关系概率系统。我们还将进一步推进精确推理,这也将使进行有效的近似推理的新方法成为可能。*最近,用形式本体定义的词汇表发布了大量的科学和政府数据。我们将致力于表示、推理和学习与异类数据集和丰富的本体互操作的假设。当在不同的抽象和细节级别定义多个假设以对多个异类数据集进行预测时,会出现令人兴奋的挑战。*最终,这些模型被用来做出决策。做出决定的另一个部分是公用事业。我们还将致力于效用模型的偏好引出,这些模型与关系模型和本体交互,并为决策者所理解。*我们的工作将建立在与真实世界的决策者在地质学、计算可持续性和医学方面的持续合作的基础上。这项提议是为了发展计算基础,使这类应用变得可行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Poole, David其他文献

New Liftable Classes for First-Order Probabilistic Inference
用于一阶概率推理的新可提升类
A Deep Learning Network for Classifying Arteries and Veins in Montaged Widefield OCT Angiograms.
  • DOI:
    10.1016/j.xops.2022.100149
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gao, Min;Guo, Yukun;Hormel, Tristan T.;Tsuboi, Kotaro;Pacheco, George;Poole, David;Bailey, Steven T.;Flaxel, Christina J.;Huang, David;Hwang, Thomas S.;Jia, Yali
  • 通讯作者:
    Jia, Yali
Stability and Dissociation of Ethylenedione (OCCO)
  • DOI:
    10.1021/acs.jpca.0c06107
  • 发表时间:
    2020-10-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mato, Joani;Poole, David;Gordon, Mark S.
  • 通讯作者:
    Gordon, Mark S.

Poole, David的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Poole, David', 18)}}的其他基金

Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
  • 批准号:
    RGPIN-2016-03858
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
  • 批准号:
    RGPIN-2016-03858
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
  • 批准号:
    RGPIN-2016-03858
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
  • 批准号:
    RGPIN-2016-03858
  • 财政年份:
    2017
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
  • 批准号:
    RGPIN-2016-03858
  • 财政年份:
    2016
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Large scale reasoning under uncertainty
不确定性下的大规模推理
  • 批准号:
    44121-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Recommender systems in social healthcare networks
社会医疗网络中的推荐系统
  • 批准号:
    469663-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Engage Grants Program
Large scale reasoning under uncertainty
不确定性下的大规模推理
  • 批准号:
    44121-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Large scale reasoning under uncertainty
不确定性下的大规模推理
  • 批准号:
    44121-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Artificial intelligence techniques for identifying which accounts are real people
人工智能技术可识别哪些帐户是真实的人
  • 批准号:
    448513-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Engage Grants Program

相似海外基金

CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Continuing Grant
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
  • 批准号:
    23K01372
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
  • 批准号:
    10604856
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
  • 批准号:
    23H03555
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Knockoff Feature Selection Techniques for Robust Inference in Supervised and Unsupervised Learning
监督和无监督学习中鲁棒推理的仿冒特征选择技术
  • 批准号:
    2310955
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
High-Dimensional Random Forests Learning, Inference, and Beyond
高维随机森林学习、推理及其他
  • 批准号:
    2310981
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Machine Learning Inference of the Ocean Environment from Acoustic Data
从声学数据机器学习推断海洋环境
  • 批准号:
    2889699
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了