Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
基本信息
- 批准号:2241575
- 负责人:
- 金额:$ 45.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As large data-driven technologies continue to be used in high-stakes decision-making, the need for fast, easily interpretable algorithms for large data analyses has become more important. A common approach in large data analyses is to use what is commonly called adaptive partitioning in which the large data set is partitioned and recursively used in the analyses. However, the rationale behind these partitioning methods is not well understood as the broad adoption of machine learning methods in applications has not always been supported by development of theoretical and methodological tools to understand their properties. This research project will study the rationale behind algorithms used in machine learning and other methods for large data analyses. The research will then develop new and improved methods for machine learning and other large data analyses and apply these methods to several economic problems. The results of this research will not only significantly improve machine learning and other large data analyses, but it will also improve decision-making generally, increase economic growth, and help establish the US as a global leader in large data analyses and machine learning.A technical challenge in formally studying adaptive partitioning and other flexible learning methods is that the randomness introduced by the often-recursive partition scheme is difficult to account for. This research will provide an array of theoretical and methodological results for adaptive partition-based and other flexible learning methods, providing both positive and negative results. The research will develop new treatment effect estimation and inference methods, and guide practice in program evaluation and causal inference. One of the main results shows that many popular recursive partitioning methods for heterogeneous treatment effect estimation can be pointwise (uniformly) inconsistent over the support of the conditioning variables. Other results show that adaptive oblique decision trees can have accuracy on par with neural networks. The research also studies non-linear partitioning-based methods with applications to quantile regression and treatment effects. Spin-off projects on causal inference and program evaluation will also be undertaken as part of this research. The results of this research will improve the analyses of large scale data, such as those used to make decisions and thus improve program evaluation. Besides improving economic decision making and economic growth, the results will also establish the US as a global leader in program evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着大型数据驱动的技术继续用于高风险决策,对大型数据分析的快速,易于解释的算法的需求变得越来越重要。大型数据分析中的一种常见方法是使用通常称为自适应分区的方法,其中大数据集被分区和递归使用。 但是,这些分区方法背后的理由并没有充分理解,因为在应用程序中的机器学习方法的广泛采用并不总是受到理论和方法论工具来理解其特性的支持。 该研究项目将研究机器学习中使用的算法和其他用于大型数据分析的方法的基本原理。 然后,该研究将开发用于机器学习和其他大型数据分析的新方法,并将这些方法应用于几个经济问题。 这项研究的结果不仅将显着改善机器学习和其他大型数据分析,而且还将一般改善决策,提高经济增长,并帮助将美国作为大型数据分析和机器学习的全球领导者。正式研究适应性分配和其他灵活学习方法的技术挑战是,经常由comportive compution compution cartitution cartition cartition cartitution cartition cartition cartition cartition cartition cartition cartition cartition cartition cartition cartition。这项研究将为基于自适应分区和其他灵活的学习方法提供一系列理论和方法论结果,从而提供积极和负面的结果。 该研究将开发新的治疗效果估计和推理方法,并指导计划评估和因果推断的实践。 主要结果之一表明,许多流行的递归分区方法用于异质治疗效果估计可能在支持条件变量的支持方面(均匀)不一致。其他结果表明,自适应倾斜决策树可以与神经网络相同。 该研究还研究了基于分数回归和治疗效果的非线性分区方法。作为这项研究的一部分,还将进行有关因果推理和计划评估的衍生项目。 这项研究的结果将改善大规模数据的分析,例如用于做出决策的数据,从而改善计划评估。 除了改善经济决策和经济增长外,结果还将确定美国作为计划评估的全球领导者。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matias Cattaneo其他文献
A Permutation Test and Estimation Alternatives for the Regression Kink Design
回归扭结设计的排列测试和估计替代方案
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Alberto Abadie;David Card;Matias Cattaneo;Raj Chetty;Avi Feller;Edward Glaeser;Paul Goldsmith;Guido Imbens;Maximilian Kasy;Larry Katz;Zhuan Pei;Mikkel Plagborg;Guillaume Pouliot - 通讯作者:
Guillaume Pouliot
Matias Cattaneo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matias Cattaneo', 18)}}的其他基金
Conference: Statistical Foundations of Data Science and their Applications
会议:数据科学的统计基础及其应用
- 批准号:
2304646 - 财政年份:2023
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
Nonparametric Estimation and Inference with Network Data
网络数据的非参数估计和推理
- 批准号:
2210561 - 财政年份:2022
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
New Developments in Methodology for Program Evaluation
项目评估方法的新进展
- 批准号:
2019432 - 财政年份:2020
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
Collaborative Research: Robust Inference for Kernel Smoothing and Related Problems
协作研究:核平滑及相关问题的鲁棒推理
- 批准号:
1947805 - 财政年份:2020
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
A Random Attention Model: Identification, Estimation and Testing
随机注意力模型:识别、估计和测试
- 批准号:
1628883 - 财政年份:2016
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
- 批准号:
1459931 - 财政年份:2015
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
New Methodological Developments for Inference in the Regression-Discontinuity Design
回归-不连续性设计中推理的新方法论发展
- 批准号:
1357561 - 财政年份:2014
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
Collaborative Research: Non-Standard Asymptotic Theory for Semiparametric Estimators
合作研究:半参数估计的非标准渐近理论
- 批准号:
1122994 - 财政年份:2011
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
Collaborative Research: Small Bandwidth Asymptotic Theory for Kernel-Based Semiparametric Estimators
合作研究:基于核的半参数估计器的小带宽渐近理论
- 批准号:
0921505 - 财政年份:2009
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习方法的南海海气耦合延伸期智能预报研究
- 批准号:42375143
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于渐进式稀疏建模与深度学习的激光吸收光谱层析成像
- 批准号:62371415
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于偏序邻域的多粒度图机器学习与决策
- 批准号:62366008
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于深度学习的装配式高层住宅智能设计方法研究
- 批准号:52378128
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于群智能优化和深度学习的泛癌驱动通路识别研究
- 批准号:62366007
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)