Data Credibility, Diversity and Privacy in Large Graph Analytics
大图分析中的数据可信度、多样性和隐私
基本信息
- 批准号:RGPIN-2017-04039
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the biggest challenges we face today is the need to handle large amounts of information. There is an urgent need to analyze data which is massive, highly interconnected and evolving with the goal of obtaining knowledge that aids us in making important decisions in application domains such as business growth, public administration, health, defense and the environment. Graphs are a natural choice to represent highly interconnected data. This research proposal addresses challenges in three core areas of large graph analytics, data credibility, diversity, and privacy.******The first topic we study is credible graph-analytics for social networks. Online social networks are efficient as a medium to spread information to millions of people in a short amount of time. Although the ease of information propagation through the network can be beneficial, spread of misinformation at such large scale can cause panic and have a disruptive effect. In order to ensure the credibility of the information received, it is important to design algorithms to detect, and limit the spread of misinformation. Our work in data credibility will design scalable algorithms for combating spread of misinformation. ******The second topic we investigate is diversity-based graph-analytics for product recommendation and social influence. Many problems in recommender systems, that assign items to users, can be modeled as graph matching problems. However, these problems are too weak to model diversity in recommendation lists, an important metric aimed at user satisfaction. Our work in data diversity will consider new ways to generalize known graph matching models in order to address diversity needs. We will investigate how to capture diversity in social networks, with the goal of discovering more influential communities in those networks.******The third topic we explore is privacy-aware graph-analytics. While the need for mining data such as e-health records has been widely recognized, ensuring that privacy needs are met before releasing the data is important. Anonymization methods achieve privacy by perturbing the data minimally while differential privacy only publishes a statistical summary using noise addition to ensure usefulness and privacy simultaneously. Our work in data privacy will tackle important open problems related to anonymization methods and differential privacy using effective methods from statistical theory and practice, namely, copulas.******The benefit of this innovative research program will be three-fold: (1) The results we prove will contribute to the body of top quality academic knowledge on each of these topics. (2) It will train HQP for positions that require highly desired skills. (3) The fast, scalable algorithms we develop in this research program will bridge the gap between theory and practice and will be highly relevant to Canadian businesses and other organizations in the public and private sector.
我们今天面临的最大挑战之一是需要处理大量信息。迫切需要分析大量、高度互连和不断发展的数据,以获得有助于我们在业务增长、公共管理、健康、国防和环境等应用领域做出重要决策的知识。图形是表示高度互连数据的自然选择。该研究提案解决了大型图分析、数据可信度、多样性和隐私这三个核心领域的挑战。我们研究的第一个主题是社交网络的可信图分析。在线社交网络作为一种在短时间内向数百万人传播信息的媒介是有效的。虽然信息通过网络传播的便利性可能是有益的,但如此大规模的错误信息传播可能会引起恐慌并产生破坏性影响。为了保证接收到的信息的可信度,设计算法来检测并限制错误信息的传播是很重要的。我们在数据可信度方面的工作将设计可扩展的算法来对抗错误信息的传播。** 我们研究的第二个主题是基于多样性的产品推荐和社会影响力图分析。在推荐系统中,许多问题,分配项目给用户,可以建模为图匹配问题。然而,这些问题是太弱的模式多样性的推荐列表,一个重要的指标,旨在用户满意度。我们在数据多样性方面的工作将考虑新的方法来推广已知的图匹配模型,以满足多样性的需求。我们将研究如何在社交网络中捕捉多样性,目的是在这些网络中发现更有影响力的社区。我们探索的第三个主题是隐私感知图分析。虽然人们普遍认识到需要挖掘电子健康记录等数据,但在发布数据之前确保满足隐私需求非常重要。匿名化方法通过最小程度地干扰数据来实现隐私,而差分隐私仅使用噪声添加来发布统计摘要,以同时确保有用性和隐私性。 我们在数据隐私方面的工作将使用统计理论和实践中的有效方法,即copula,解决与匿名化方法和差异隐私相关的重要开放问题。这项创新研究计划的好处将是三方面的:(1)我们证明的结果将有助于对这些主题的高质量的学术知识的身体。(2)它将为需要高度技能的职位培训HQP。(3)我们在这项研究计划中开发的快速,可扩展的算法将弥合理论与实践之间的差距,并将与加拿大企业和公共和私营部门的其他组织高度相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasan, Venkatesh其他文献
Road to family planning and RMNCHN related SDGs: Tracing the role of public health spending in India
- DOI:
10.1080/17441692.2020.1809692 - 发表时间:
2020-08-19 - 期刊:
- 影响因子:3.3
- 作者:
Goli, Srinivas;Moradhvaj;Srinivasan, Venkatesh - 通讯作者:
Srinivasan, Venkatesh
Cellphone Monitoring of Multi-Qubit Emission Enhancements from Pd-Carbon Plasmonic Nanocavities in Tunable Coupling Regimes with Attomolar Sensitivity
- DOI:
10.1021/acsami.6b07445 - 发表时间:
2016-09-07 - 期刊:
- 影响因子:9.5
- 作者:
Srinivasan, Venkatesh;Manne, Anupam Kumar;Ramamurthy, Sai Sathish - 通讯作者:
Ramamurthy, Sai Sathish
Scalable probabilistic truss decomposition using central limit theorem and H-index.
- DOI:
10.1007/s10619-022-07415-9 - 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Esfahani, Fatemeh;Daneshmand, Mahsa;Srinivasan, Venkatesh;Thomo, Alex;Wu, Kui - 通讯作者:
Wu, Kui
Low-Cost Plasmonic Carbon Spacer for Surface Plasmon-Coupled Emission Enhancements and Ethanol Detection: a Smartphone Approach
- DOI:
10.1007/s11468-017-0538-9 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:3
- 作者:
Badiya, Pradeep Kumar;Srinivasan, Venkatesh;Ramamurthy, Sai Sathish - 通讯作者:
Ramamurthy, Sai Sathish
MMH* with arbitrary modulus is always almost-universal
- DOI:
10.1016/j.ipl.2016.03.009 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:0.5
- 作者:
Bibak, Khodakhast;Kapron, Bruce M.;Srinivasan, Venkatesh - 通讯作者:
Srinivasan, Venkatesh
Srinivasan, Venkatesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasan, Venkatesh', 18)}}的其他基金
Data Credibility, Diversity and Privacy in Large Graph Analytics
大图分析中的数据可信度、多样性和隐私
- 批准号:
RGPIN-2017-04039 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Data Credibility, Diversity and Privacy in Large Graph Analytics
大图分析中的数据可信度、多样性和隐私
- 批准号:
RGPIN-2017-04039 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Data Credibility, Diversity and Privacy in Large Graph Analytics
大图分析中的数据可信度、多样性和隐私
- 批准号:
RGPIN-2017-04039 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Data Credibility, Diversity and Privacy in Large Graph Analytics
大图分析中的数据可信度、多样性和隐私
- 批准号:
RGPIN-2017-04039 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Data Credibility, Diversity and Privacy in Large Graph Analytics
大图分析中的数据可信度、多样性和隐私
- 批准号:
RGPIN-2017-04039 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Information Extraction from Interconnected Data: An Algorithmic Study
从互连数据中提取信息:算法研究
- 批准号:
283327-2012 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Information Extraction from Interconnected Data: An Algorithmic Study
从互连数据中提取信息:算法研究
- 批准号:
283327-2012 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Information Extraction from Interconnected Data: An Algorithmic Study
从互连数据中提取信息:算法研究
- 批准号:
283327-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Information Extraction from Interconnected Data: An Algorithmic Study
从互连数据中提取信息:算法研究
- 批准号:
283327-2012 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Information Extraction from Interconnected Data: An Algorithmic Study
从互连数据中提取信息:算法研究
- 批准号:
283327-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Body Worn Camera Evidence and Assessment of Witness Credibility
随身摄像头证据和证人可信度评估
- 批准号:
DP240100169 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects
CAREER: Assessing the effect of source credibility on public perceptions of science and place-based conservation
职业:评估来源可信度对公众对科学和地方保护的看法的影响
- 批准号:
2143843 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Understanding how visual features of misinformation influence credibility perceptions
协作研究:SaTC:核心:小:了解错误信息的视觉特征如何影响可信度认知
- 批准号:
2150723 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Insurance ratemaking with consideration of dynamic credibility
考虑动态可信度的保险费率制定
- 批准号:
RGPIN-2021-02622 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
How Credible is Credibility Evidence in Refugee Status Determinations?
难民身份确定中的可信度证据有多可信?
- 批准号:
2717707 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Data Credibility, Diversity and Privacy in Large Graph Analytics
大图分析中的数据可信度、多样性和隐私
- 批准号:
RGPIN-2017-04039 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Evaluation of credibility among epidemiological analysis methods for Staphylococcus aureus by whole-genome gene analysis
全基因组基因分析评价金黄色葡萄球菌流行病学分析方法的可信度
- 批准号:
22K10371 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bayesian credibility premiums in models for dependent claims
从属索赔模型中的贝叶斯可信度溢价
- 批准号:
573663-2022 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: SaTC: CORE: Small: Understanding how visual features of misinformation influence credibility perceptions
协作研究:SaTC:核心:小:了解错误信息的视觉特征如何影响可信度认知
- 批准号:
2150716 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Improving the credibility and utility of in vitro research
提高体外研究的可信度和实用性
- 批准号:
MR/W029898/1 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant