Nanostructured Electrodes for Electrochemical Energy Conversion and Storage

用于电化学能量转换和存储的纳米结构电极

基本信息

  • 批准号:
    RGPIN-2014-06138
  • 负责人:
  • 金额:
    $ 6.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

There is a growing awareness that nanotechnology will have a profound impact on energy generation and storage. Dr. Sun will continue to use his expertise in nanotechnology to address challenges in the use to clean energy.* The objective of this proposed application is to lead a vigorous research program on the controlled synthesis and characterization of nanostructured materials as electrodes to address challenges in fuel cells and Li batteries. This proposal covers basic studies in two areas: (i) nanostructured materials as novel catalyst for PEM fuel cells in energy conversion; and (ii) nanostructured materials as advanced cathodes and solid-state electrolytes for Li-Air batteries in energy storage. An important aspect in this proposed research is to apply various advanced characterization techniques for the investigation of structure and bonding of catalysts, catalysts-support interactions, and nanostructures as well as reaction mechanisms. The Discovery Grant (DG) supports fundamental studies and basic science while Dr. Sun's other funding supports more applied studies.* For PEM fuel cells, cost and durability are two major roadblocks that have to be overcome before the PEMFC system can become economically viable. Current PEMFC technology still suffers from low platinum utilization, limited mass transport capability, and poor electrochemical stability of the carbon black-based support in the electrode structure. Therefore, novel electrode design, and development of a low cost and stable catalyst and support will provide us the means to reduce the cost and performance gaps towards commercial viability. The specific objectives include: Objective 1- single-atom or cluster Pt-based catalysts by atomic layer deposition technique; and Objective 2 - one-dimensional Pt-based ultra-thin nanowire nanostructures as novel catalysts. It is expected that integrated nanostructured-based fuel cell electrodes will be ideal materials for providing a higher catalytic performance, high catalyst utilization, high durability, and a longer fuel cell operational life.* Li-Air batteries have attracted much attention due to their extremely high-energy density potential for Electric Vehicles; however, critical challenges to be addressed relate to the slow rate of O2 reduction in the cathode electrode and highly unstable electrolytes. The specific objectives include: Objective 3 - 3D non-carbon nanostructured electrodes and novel catalysts for Li-Air batteries; and Objective 4 - all solid-state electrolytes for Li-air batteries. It is expected that the combination of 3D nanostructured electrodes, novel catalysts synthesized by ALD and solid-state electrolytes will result in high capacity and stability electrodes for Li-Air batteries. The in-situ characterization techniques such as in-situ XRD and synchrotron will help to increase understanding of the relationship between the discharge/charge products and applied catalysts and electrolytes, leading to designing and developing highly effective electrodes. * This innovative research program will take full advantage of Dr. Sun' expertise in nanotechnology for clean energy. The training provided by the proposed program will give HQP transferable skills in nanotechnology and clean energy including all aspects from synthesis of nanomaterials, advanced characterization to electrode fabrication so that they will be in high demand both in the industrial and academic sectors in Canada. The successful completion of the proposed program will be of benefit to Canadian industry, and to the nanotechnology community by accelerating the fuel cell and Li-Air battery commercialization process and directly reducing environmental pollution.
人们越来越意识到,纳米技术将对能源的生产和储存产生深远的影响。孙先生将继续利用他在纳米技术方面的专业知识来应对清洁能源使用方面的挑战。*这项拟议应用的目标是领导一项关于纳米结构材料作为电极的受控合成和表征的强有力的研究计划,以应对燃料电池和锂电池方面的挑战。这项建议包括两个领域的基础研究:(I)纳米材料作为PEM燃料电池能量转换的新型催化剂;(Ii)纳米材料作为先进的阴极和固态电解液用于锂空气电池的储能。这项研究的一个重要方面是应用各种先进的表征技术来研究催化剂的结构和成键、催化剂与载体的相互作用、纳米结构以及反应机理。探索基金(DG)支持基础研究和基础科学,孙博士的其他资助则支持更多的应用研究。*对于质子交换膜燃料电池来说,成本和耐用性是在质子交换膜燃料电池系统变得经济可行之前必须克服的两个主要障碍。目前的PEMFC技术仍然存在铂利用率低、传质能力有限、电极结构中炭黑载体的电化学稳定性差等问题。因此,新颖的电极设计,以及开发低成本、稳定的催化剂和载体,将为我们提供缩小成本和性能差距的手段,从而实现商业可行性。具体目标包括:目标1-通过原子层沉积技术制备单原子或簇状铂基催化剂;以及目标2-一维铂基超细纳米线纳米结构作为新型催化剂。预计集成纳米结构燃料电池电极将是提供更高催化性能、高催化剂利用率、高耐用性和更长燃料电池使用寿命的理想材料。*锂空气电池因其极高的能量密度潜力而引起电动汽车的广泛关注;然而,需要解决的关键挑战与阴极中O2还原速度缓慢和极不稳定的电解液有关。具体目标包括:目标3-用于锂空气电池的3D非碳纳米结构电极和新型催化剂;以及目标4-用于锂空气电池的全固态电解液。三维纳米结构电极、ALD合成的新型催化剂和固态电解液的结合有望得到高容量和稳定的Li-Air电池电极。原位X射线衍射仪和同步加速器等现场表征技术将有助于加深对放电/充电产物与所用催化剂和电解液之间关系的了解,从而设计和开发高效电极。*这一创新研究计划将充分利用孙先生在清洁能源纳米技术方面的专业知识。拟议计划提供的培训将使HQP在纳米技术和清洁能源方面获得可转让的技能,包括从纳米材料合成、先进表征到电极制造的方方面面,因此它们在加拿大的工业和学术部门都将受到高度需求。该计划的成功完成将加速燃料电池和锂空气电池的商业化进程,并直接减少环境污染,从而有利于加拿大的工业和纳米科技界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun, Xueliang其他文献

Cobalt-Doped SnS2 with Dual Active Centers of Synergistic Absorption-Catalysis Effect for High-S Loading Li-S Batteries
  • DOI:
    10.1002/adfm.201806724
  • 发表时间:
    2019-02-21
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Gao, Xuejie;Yang, Xiaofei;Sun, Xueliang
  • 通讯作者:
    Sun, Xueliang
Dual-phase Spinel MnCo2O4 Nanocrystals with Nitrogen-doped Reduced Graphene Oxide as Potential Catalyst for Hybrid Na-Air Batteries
  • DOI:
    10.1016/j.electacta.2017.05.100
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Kang, Yao;Zou, Da;Sun, Xueliang
  • 通讯作者:
    Sun, Xueliang
Temperature-Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotron-Based Imaging Techniques
  • DOI:
    10.1002/adma.202002550
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Adair, Keegan R.;Banis, Mohammad Norouzi;Sun, Xueliang
  • 通讯作者:
    Sun, Xueliang
Highly Stable Na2/3(Mn0.54Ni0.13Co0.13)O2 Cathode Modified by Atomic Layer Deposition for Sodium-Ion Batteries
  • DOI:
    10.1002/cssc.201500155
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Kaliyappan, Karthikeyan;Liu, Jian;Sun, Xueliang
  • 通讯作者:
    Sun, Xueliang
Few-Layer MoSe2 Nanosheets with Expanded (002) Planes Confined in Hollow Carbon Nanospheres for Ultrahigh-Performance Na-Ion Batteries
用于超高性能钠离子电池的空心碳纳米球中具有扩展(002)平面的几层 MoSe2 纳米片
  • DOI:
    10.1002/adfm.201707480
  • 发表时间:
    2018-05-09
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Liu, Hui;Guo, Hong;Sun, Xueliang
  • 通讯作者:
    Sun, Xueliang

Sun, Xueliang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sun, Xueliang', 18)}}的其他基金

Nanomaterials for Energy Conversion and Storage
用于能量转换和存储的纳米材料
  • 批准号:
    CRC-2020-00357
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Canada Research Chairs
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
  • 批准号:
    RGPIN-2019-06617
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Nanomaterials For Energy Conversion And Storage
用于能量转换和存储的纳米材料
  • 批准号:
    CRC-2020-00357
  • 财政年份:
    2021
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Canada Research Chairs
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
  • 批准号:
    RGPIN-2019-06617
  • 财政年份:
    2021
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured Materials for Energy Conversion and Storage
用于能量转换和存储的纳米结构材料
  • 批准号:
    1000229206-2013
  • 财政年份:
    2020
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Canada Research Chairs
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
  • 批准号:
    RGPIN-2019-06617
  • 财政年份:
    2020
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Nanomaterials for Energy Conversion and Storage
用于能量转换和存储的纳米材料
  • 批准号:
    1000233121-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Canada Research Chairs
Robust metallic lithium anode protected by advanced atomic/molecular layer deposition techniques for next-generation battery technology
坚固的金属锂阳极受到先进原子/分子层沉积技术的保护,适用于下一代电池技术
  • 批准号:
    506277-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Collaborative Research and Development Grants
Nanostructured Materials for Energy Conversion and Storage
用于能量转换和存储的纳米结构材料
  • 批准号:
    1000229206-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Canada Research Chairs
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
  • 批准号:
    RGPIN-2019-06617
  • 财政年份:
    2019
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

New electrodes for green electrochemical carbon dioxide capture
用于绿色电化学二氧化碳捕获的新型电极
  • 批准号:
    DE240100623
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Early Career Researcher Award
Recycling of platinum electrodes demonstrating particulate electrochemical printing - PEP 3d Pt
铂电极的回收展示了颗粒电化学印刷 - PEP 3d Pt
  • 批准号:
    2905755
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Studentship
Advanced Gas Diffusion Electrodes For Electrochemical Manufacturing
用于电化学制造的先进气体扩散电极
  • 批准号:
    FT220100166
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    ARC Future Fellowships
An Implantable Biosensor Platform Enabled by Novel Porous Oxide Protection of Electrochemical Aptamer Working Electrodes
由电化学适体工作电极的新型多孔氧化物保护实现的植入式生物传感器平台
  • 批准号:
    2327102
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Multiscale modeling of electrochemical reactions in solid oxide cell electrodes
固体氧化物电池电极电化学反应的多尺度建模
  • 批准号:
    23K03707
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding electrochemical hydrogenation reactions over post-transition metal electrodes: the role of incidental mediators and metastable phases
了解后过渡金属电极上的电化学氢化反应:偶然介体和亚稳态相的作用
  • 批准号:
    2301381
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Quantifying the Effects of Disorder and Lateral Interactions on Chemically Modified Carbon Electrodes: Molecular Insights to Rationally Design Electrochemical Performance
量化无序和横向相互作用对化学修饰碳电极的影响:合理设计电化学性能的分子洞察
  • 批准号:
    2305065
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Designing porous carbon electrodes for high performance LIBs based on understanding electrochemical reactions in the pores
基于对孔内电化学反应的理解,设计高性能锂离子电池的多孔碳电极
  • 批准号:
    23H02048
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
All solid-state electrochemical energy storage devices using strain-free MXene electrodes
使用无应变 MXene 电极的所有固态电化学储能装置
  • 批准号:
    22K19092
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Electrochemical energy storage for wearable electronics: yarn-like and knitted electrodes composed of molecularly imprinted carbons and polymers
可穿戴电子产品的电化学储能:由分子印迹碳和聚合物组成的纱线和针织电极
  • 批准号:
    RGPIN-2022-03239
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了