Advances in Machine Vision and Manufacturing Automation
机器视觉和制造自动化的进步
基本信息
- 批准号:RGPIN-2017-04586
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For manufacturers to stay competitive, increased levels of automation are a must for survival. Machine vision (MV) is one of the key tools in the automation toolkit as it provides for image-based inspection and analysis of parts and the machines that produce those parts. The work will be broken down into two projects, and will lead to the training of 2 PhD, 3 MSc and 5 BSc students. The overall goal is to advance the state of the art of MV-based systems with novel algorithms and system designs that will create the basis for greater acceptance of automation technology by Canadian industry.*******Project A is on the subject of MV for part inspection. For decades it has been recognized that there is a need for an adaptive machine vision (AMV) system, one that can be implemented in different applications without extensive retuning. AMV part inspection systems that have been developed to date have been pseudo adaptive, in the sense that they were not tested on different applications, but instead tested on different models of the same part. The goal of this project is to develop a truly adaptive system and test it on 3 different applications: coins, gears and varistors. The initial application is a particularly challenging problem where the “part” is an Indian coin. For testing purposes, coins will be placed on a moving conveyor to mimic a manufacturing operation. The system will be required to recognize the coins and sort them, in real time. A traditional MV system has two parts: 1) feature selection with images as the input and 2) classification with features as the input. Based upon experience to date, the proposed AMV system will use a Contingency-based feature selector and a novel Fuzzy Decision Tree-based classifier. Performance will be benchmarked against AlexNet (a non-traditional Deep Neural Net).*******Project B is on the subject of MV for machine fault detection. Automated assembly machines operate around-the-clock to achieve high production rates. Continuous operation results in high mechanical wear that can led to machine faults. Traditional fault detection methods check for deviations from fixed threshold limits with multiple conventional sensors. The goal of this project is to develop a MV-based detection system to detect known and unknown faults with a single camera. A high speed industrial assembly machine is available for this work. The proposed approach will be based upon the Gaussian Mixture Model (GMM) method for video analysis. The analysis sets out to identify images that deviate from the normal, in other words a “fault”. The images are then analyzed to find out where the difference has occurred. This localization stage will give basic information about the nature of the fault. Thus, the proposed GMM-based system sets out to detect and locate the fault on the machine while leaving the diagnosis to the operator.*******MATLAB will be used for off-line software prototyping and OpenCV will be used for on-line testing.******
对于制造商来说,要保持竞争力,提高自动化水平是生存的必要条件。 机器视觉(MV)是自动化工具包中的关键工具之一,因为它提供了对零件和生产这些零件的机器的基于图像的检测和分析。 这项工作将分为两个项目,并将导致2个博士,3个硕士和5个理学士学生的培训。 总体目标是通过新颖的算法和系统设计来推进基于MV的系统的最新技术水平,这将为加拿大工业更大程度地接受自动化技术奠定基础。项目A涉及部件检查的MV。 几十年来,人们已经认识到需要一种自适应机器视觉(AMV)系统,这种系统可以在不同的应用中实现,而无需大量的重新调整。 迄今为止开发的AMV零件检测系统是伪自适应的,在这个意义上,它们不是在不同的应用上进行测试,而是在同一零件的不同模型上进行测试。 该项目的目标是开发一个真正的自适应系统,并在3种不同的应用中进行测试:硬币,齿轮和压敏电阻。 最初的应用是一个特别具有挑战性的问题,其中“部分”是一个印度硬币。 出于测试目的,硬币将被放置在移动的传送带上以模拟制造操作。 该系统将被要求识别硬币和排序,在真实的时间。 传统的MV系统有两个部分:1)以图像为输入的特征选择和2)以特征为输入的分类。 根据迄今为止的经验,拟议的AMV系统将使用基于权变的特征选择器和一种新的基于模糊决策树的分类器。 性能将以AlexNet(一种非传统的深度神经网络)为基准。*项目B的主题是机器故障检测的MV。 自动化装配机全天候运行,以实现高生产率。 连续运行会导致高机械磨损,从而导致机器故障。 传统的故障检测方法使用多个常规传感器检查与固定阈值限制的偏差。 该项目的目标是开发一个基于MV的检测系统,用一个摄像机检测已知和未知的故障。 高速工业装配机可用于此工作。 所提出的方法将基于高斯混合模型(GMM)的视频分析方法。 该分析旨在识别偏离正常的图像,换句话说,就是“故障”。 然后分析图像以找出差异发生的地方。 该定位阶段将给出关于故障性质的基本信息。 因此,所提出的基于GMM的系统着手检测和定位机器上的故障,同时将诊断留给操作员。MATLAB将用于离线软件原型设计,OpenCV将用于在线测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surgenor, Brian其他文献
Fault detection and classification in automated assembly machines using machine vision
- DOI:
10.1007/s00170-016-9581-5 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:3.4
- 作者:
Chauhan, Vedang;Surgenor, Brian - 通讯作者:
Surgenor, Brian
A flexible machine vision system for small part inspection based on a hybrid SVM/ANN approach
- DOI:
10.1007/s10845-018-1438-3 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:8.3
- 作者:
Joshi, Keyur D.;Chauhan, Vedang;Surgenor, Brian - 通讯作者:
Surgenor, Brian
Surgenor, Brian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Surgenor, Brian', 18)}}的其他基金
Advances in Machine Vision and Manufacturing Automation
机器视觉和制造自动化的进步
- 批准号:
RGPIN-2017-04586 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in Machine Vision and Manufacturing Automation
机器视觉和制造自动化的进步
- 批准号:
RGPIN-2017-04586 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in Machine Vision and Manufacturing Automation
机器视觉和制造自动化的进步
- 批准号:
RGPIN-2017-04586 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in Machine Vision and Manufacturing Automation
机器视觉和制造自动化的进步
- 批准号:
RGPIN-2017-04586 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Automation of the sanding process for wood products
木制品打磨过程的自动化
- 批准号:
530912-2018 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
Advances in Machine Vision and Manufacturing Automation
机器视觉和制造自动化的进步
- 批准号:
RGPIN-2017-04586 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in intelligent control and manufacturing automation
智能控制和制造自动化的进步
- 批准号:
5493-2009 - 财政年份:2013
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in intelligent control and manufacturing automation
智能控制和制造自动化的进步
- 批准号:
5493-2009 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in intelligent control and manufacturing automation
智能控制和制造自动化的进步
- 批准号:
5493-2009 - 财政年份:2011
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in intelligent control and manufacturing automation
智能控制和制造自动化的进步
- 批准号:
5493-2009 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative R&D
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Evolving Telecoms scope 3 decarbonisation: an open-access emissions datasource powered by Vision Machine Learning
不断发展的电信范围 3 脱碳:由视觉机器学习提供支持的开放获取排放数据源
- 批准号:
10111834 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2416375 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001830/1 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2328855 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2328856 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant