Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
基本信息
- 批准号:10793008
- 负责人:
- 金额:$ 33.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBehaviorCOVID-19COVID-19 pandemicChronic DiseaseClinicalClinical ResearchCollaborationsCommunicable DiseasesComplexComputational TechniqueComputer ModelsComputing MethodologiesDataDevelopmentDiffusionDiseaseDisease ManagementDisease OutbreaksEconomic BurdenEducational process of instructingEmerging Communicable DiseasesEnvironmentEpidemicEpidemiologic MethodsEpidemiologyEquationGuidelinesHealthHealth PlanningInfectious Diseases ResearchInstitutionInterventionKnowledgeLearningLiquid substanceLong COVIDMathematicsMethodsMissionModelingMorbidity - disease rateOutcomePersonsPolicy DevelopmentsPopulationPopulation DynamicsPrevalenceProcessPublic HealthPublic Health AdministrationReactionResearchResearch PersonnelRouteSARS-CoV-2 infectionSARS-CoV-2 transmissionScientistSolidSystemTechniquesTheoretical StudiesUnited States National Institutes of HealthUniversitiesVaccinationValidationVariantVulnerable PopulationsWorkcohortcomputer studiesdisease transmissiondisorder controlexperienceexperimental studyhealth managementimprovedinfectious disease modelinnovationinsightinterdisciplinary collaborationinterestknowledge basemathematical methodsmathematical modelmortalitynoveloutbreak responseprevent pandemicspublic health relevancescaffoldscientific computingsimulationsuccesstooltransmission processundergraduate research experienceundergraduate studentvaccine hesitancy
项目摘要
Project Summary/Abstract
Emerging and reemerging infectious diseases represent a tremendous health and economic burden
throughout the world. The COVID-19 pandemic underscores the gap between the complex mechanisms
of disease transmission and spread and our current knowledge and intervention strategies. Several critical
issues such as the emergence of new variants, the consequence of vaccine hesitancy, the presence of
environmental transmission, the impact of underlying health conditions and behaviors, and the prediction
of disease spread, which are related to COVID-19 and applicable to a wide variety of infectious diseases,
are only partially and inadequately addressed at present. Mathematical and computational studies can
provide key insights into these challenges and improve our understanding of disease transmission, spread,
and progression. The overall objective of this proposal is to establish a new mathematical and
computational modeling framework for infectious diseases, with a focus on COVID-19, that integrates novel
mathematical modeling, extensive numerical simulation, and rigorous data validation. To achieve this
objective, we will pursue three Specific Aims: (1) Modeling the transmission dynamics of infectious
diseases; (2) Modeling the impact of underlying health conditions; and (3) Modeling the spatial spread of
infectious diseases. The proposed research is significant because it is expected to substantially advance
our current understanding of the complex dynamics associated with COVID-19 and many other infectious
diseases, which will potentially improve our current practice in disease control and outbreak management.
The approach is innovative in the development of novel mathematical models and advanced computational
techniques to address pressing needs for infectious disease research, in the integration of mathematical,
computational, and epidemiological methods, and in the involvement of undergraduate students for
authentic research through a progressive learning process. The project represents an interdisciplinary
collaboration between an applied and computational mathematician and a public health scientist who have
worked with each other for several years. A cohort of 5 undergraduate students per year, for a total of 15
over three years, will be supported by the project. The success of this project will build a solid knowledge
base for the complex dynamics of infectious diseases, will provide important guidelines for the public health
administrations in disease management and policy development, and will create a novel platform for
engaging undergraduate researchers and strengthening the institutional research environment.
项目总结/摘要
新出现和重新出现的传染病是一个巨大的健康和经济负担
在全世界都有。COVID-19大流行凸显了复杂机制之间的差距
疾病的传播和扩散以及我们目前的知识和干预战略。几个关键
问题,如出现新的变种,疫苗犹豫的后果,
环境传播,潜在健康状况和行为的影响,以及预测
与COVID-19相关并适用于各种传染病的疾病传播,
目前只得到部分和不充分的解决。数学和计算研究可以
提供对这些挑战的关键见解,并提高我们对疾病传播,传播,
和进步。该提案的总体目标是建立一个新的数学和
传染病的计算建模框架,重点是COVID-19,它集成了新的
数学建模、广泛的数值模拟和严格的数据验证。实现这一
目标,我们将追求三个具体目标:(1)模拟传染病的传播动力学
疾病;(2)模拟潜在健康状况的影响;(3)模拟
传染病这项拟议中的研究意义重大,因为预计它将大大推进
我们目前对与COVID-19和许多其他传染病相关的复杂动态的理解
这将有可能改善我们目前在疾病控制和疫情管理方面的做法。
该方法是创新的发展新的数学模型和先进的计算
技术,以解决迫切需要的传染病研究,在整合的数学,
计算和流行病学方法,并在本科生的参与,
通过渐进的学习过程进行真实的研究。该项目代表了一个跨学科的
一位应用和计算数学家和一位公共卫生科学家之间的合作,
一起工作了好几年每年5名本科生,共15名
三年后,将得到该项目的支持。这个项目的成功将建立一个坚实的知识
传染病复杂动力学的基础,将为公共卫生提供重要指导
政府在疾病管理和政策制定方面的作用,并将建立一个新的平台,
吸引本科生研究人员,加强机构研究环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Wang其他文献
Jin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Wang', 18)}}的其他基金
Development of First-in-Class RIPK1 Degraders to Improve Cancer Immunotherapies
开发一流的 RIPK1 降解剂以改善癌症免疫疗法
- 批准号:
10390589 - 财政年份:2022
- 资助金额:
$ 33.12万 - 项目类别:
Development of First-in-Class RIPK1 Degraders to Improve Cancer Immunotherapies
开发一流的 RIPK1 降解剂以改善癌症免疫疗法
- 批准号:
10661495 - 财政年份:2022
- 资助金额:
$ 33.12万 - 项目类别:
Development of First-in-Class RIPK1 Degraders to Improve Cancer Immunotherapies
开发一流的 RIPK1 降解剂以改善癌症免疫疗法
- 批准号:
10746264 - 财政年份:2022
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10503835 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10802956 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Reversible Covalent BTK Degraders as the Next Generation Targeted Therapy to Treat B-cell Malignancies
可逆共价 BTK 降解剂作为治疗 B 细胞恶性肿瘤的下一代靶向疗法
- 批准号:
10737768 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10412114 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10663178 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10261446 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10032662 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
相似国自然基金
数字消费场景下在线行为驱动的消费者心理识别与购买决策研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度机器学习算法的暴力行为预测模型在精神专科医院研发与验证
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多模态融合与时空特征增强的老年人异常行为识别算法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
信息茧房与算法厌恶:人-算法交互的心理影响与行为因素研究
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:面上项目
“人相关”还是“货相似”?算法推荐框架对消费者多阶段行为的影响研究
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
算法决策下的去人化体验形成、影响及干预机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
空间管状折纸机器人动力学行为及轨迹跟踪控制的辛方法
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
金融市场高频算法市场操纵交易行为的检测与监管
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
算法价格歧视对消费者报复行为及其转移的影响机制研究:算法移情与认知偏差补
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
考虑司机算法厌恶行为的网约车平台车辆调
度策略与激励机制研究
- 批准号:72401062
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 33.12万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 33.12万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 33.12万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 33.12万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 33.12万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 33.12万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 33.12万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 33.12万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 33.12万 - 项目类别:
Collaborative Research and Development Grants