Algebraic and relational structures

代数和关系结构

基本信息

  • 批准号:
    RGPIN-2015-05661
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Algebraic and relational structures arise in many different contexts, not only within mathematics, but in most of the sciences, and even in day to day life. For example, algebras known as groups are used to represent the symmetries of crystals and other physical systems and Boolean algebras are used to codify rules of logic. Many other common systems, in particular those arising from questions in computer science can be viewed in an algebraic way. Thus research on algebraic and relational structures can have an impact on several branches of the sciences and in particular on computer science.***  *Several important properties of algebraic systems can be expressed via equations. For example, the fact that addition is commutative is expressed by the equation x + y = y + x. It has proved useful to organize and classify algebraic systems according to the equations that they satisfy. These equationally defined classes of algebras, called varieties, are objects that I study in my research. I am interested in understanding the connection between various types of complexities that can arise in varieties and the structure of the algebras that belong to them.***  *A more recent direction that my research has taken relates to a problem from computational complexity. An important class of***problems, known as constraint satisfaction problems (CSPs), has a natural expression in terms of finite algebras and relational***structures. CSPs are ubiquitous in many areas of artificial intelligence, computer science, and discrete mathematics, such as***database theory, scheduling, and networking. A system of linear equations can be viewed as a special type of CSP. I am investigating a conjectured correlation between manageable complexity of subclasses of CSPs and the structure of the corresponding algebraic and relational systems.
代数和关系结构出现在许多不同的背景下,不仅在数学中,而且在大多数科学中,甚至在日常生活中。例如,被称为群的代数被用来表示晶体和其他物理系统的对称性,布尔代数被用来编纂逻辑规则。许多其他常见的系统,特别是那些在计算机科学中产生的问题,可以被视为在代数的方式。 因此,对代数和关系结构的研究可以对科学的几个分支产生影响,特别是对计算机科学。 * 代数系统的几个重要性质可以通过方程来表达。 例如,加法是可交换的这一事实可以用方程x + y = y + x来表示。它已被证明是有用的组织和分类代数系统根据方程,他们满足。这些用等式定义的代数类,称为簇,是我研究的对象。 我感兴趣的是理解各种类型的复杂性之间的联系,这些复杂性可能出现在变种和属于它们的代数的结构中。 * 我的研究最近的一个方向与计算复杂性问题有关。 一类重要的 * 问题,被称为约束满足问题(CSP),有一个自然的表达有限代数和关系 * 结构。CSP在人工智能、计算机科学和离散数学的许多领域都无处不在,例如 * 数据库理论、调度和网络。线性方程组可以被看作是CSP的一种特殊类型。我正在研究CSP子类的可管理复杂性与相应的代数和关系系统的结构之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valeriote, Matthew其他文献

Valeriote, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valeriote, Matthew', 18)}}的其他基金

Algebra, logic, and complexity
代数、逻辑和复杂性
  • 批准号:
    RGPIN-2020-05714
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra, logic, and complexity
代数、逻辑和复杂性
  • 批准号:
    RGPIN-2020-05714
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra, logic, and complexity
代数、逻辑和复杂性
  • 批准号:
    RGPIN-2020-05714
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and relational structures
代数和关系结构
  • 批准号:
    RGPIN-2015-05661
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and relational structures
代数和关系结构
  • 批准号:
    RGPIN-2015-05661
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and relational structures
代数和关系结构
  • 批准号:
    RGPIN-2015-05661
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and relational structures
代数和关系结构
  • 批准号:
    RGPIN-2015-05661
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebric and relational structures
代数和关系结构
  • 批准号:
    124205-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebric and relational structures
代数和关系结构
  • 批准号:
    124205-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Algebric and relational structures
代数和关系结构
  • 批准号:
    124205-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Logic, Ramsey Theory, and Relational Structures
逻辑、拉姆齐理论和关系结构
  • 批准号:
    2300896
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Logic, Ramsey Theory, and Relational Structures
逻辑、拉姆齐理论和关系结构
  • 批准号:
    2245054
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Logic, Ramsey Theory, and Relational Structures
逻辑、拉姆齐理论和关系结构
  • 批准号:
    1901753
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Algebraic and relational structures
代数和关系结构
  • 批准号:
    RGPIN-2015-05661
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Indecomposable relational structures, Linear extensions of finite posets and Chromatic number of directed graphs
不可分解的关系结构、有限偏序集的线性扩展和有向图的色数
  • 批准号:
    DDG-2018-00011
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Development Grant
Indecomposable relational structures, Linear extensions of finite posets and Chromatic number of directed graphs
不可分解的关系结构、有限偏序集的线性扩展和有向图的色数
  • 批准号:
    DDG-2018-00011
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Development Grant
Relational Structures and Applications
关系结构和应用
  • 批准号:
    RGPGP-2014-00062
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Group
Quantum advantage in categories of relational structures
关系结构类别中的量子优势
  • 批准号:
    1893567
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Algebraic and relational structures
代数和关系结构
  • 批准号:
    RGPIN-2015-05661
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Relational Structures and Applications
关系结构和应用
  • 批准号:
    RGPGP-2014-00062
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了