Combinatorial optimization in machine learning using constraint programming

使用约束规划的机器学习组合优化

基本信息

  • 批准号:
    RGPIN-2017-04633
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Several important tasks in machine learning can be formulated as combinatorial optimization problems. For example, learning the structure of a Bayesian network from data can be formulated as a combinatorial optimization problem, where a score is defined that measures how well a candidate structure is supported by the observed data and the task is to find the structure with the lowest score. As a second example, learning a decision tree from labeled data can be formulated as a combinatorial optimization problem, where the aim is to find the decision tree that best predicts the data subject to regularization constraints. Both of these problems are NP-Hard in general to solve optimally but are also NP-Hard to solve approximately to within a reasonable factor. Thus, advanced search techniques are needed. This research proposal is an investigation into formulating and improving constraint programming and other advanced constraint-based search approaches for solving combinatorial optimization problems that arise in machine learning.******In a constraint programming approach, one models a problem by specifying constraints on acceptable solutions and search is then used to find a solution that satisfies the constraints and optimizes a cost function. An important feature of constraint programming is that one can first focus on a declarative constraint model and then develop an efficient algorithm for that model, either a complete and optimal algorithm based on backtracking search or an incomplete and approximate algorithm based on local search. In general, the research will be application-driven and will address practical, important problems. The research will be guided by the two important applications alluded to above: learning the structure of a Bayesian network from data and learning a decision tree from data subject to regularization constraints. The scientific approach will include: developing improved constraint models, improving the upper and lower bounds used during the search, investigating alternative search spaces, investigating the incorporation of prior domain knowledge in the form of constraints, methods for model averaging by generating the k-best models, extending the methods to other directed acyclic probabilistic graphical models such as sigmoid belief networks, and extending the methods to other decision tree models such as multi-variate decision trees.******The primary goals of the research projects are to develop faster algorithms for finding solutions, algorithms that find optimal or higher quality solutions, and algorithms that are more widely applicable in practice. Any improvements to the underlying solving algorithms have the potential to improve many applications of these machine learning approaches. A secondary goal of this work is to further develop constraint programming techniques that have general applicability to similar optimization problems.
机器学习中的几个重要任务可以表示为组合优化问题。例如,从数据中学习贝叶斯网络结构可以被表示为组合优化问题,其中定义了衡量候选结构被观测数据支持得有多好的分数,并且任务是找到分数最低的结构。作为第二个例子,从标记数据中学习决策树可以被描述为一个组合优化问题,其中的目标是找到对受正则化约束的数据进行最佳预测的决策树。这两个问题一般都是NP-困难的,难以最优解决,但也都是NP-困难的,近似地在一个合理的因素内解决。因此,需要先进的搜索技术。针对机器学习中出现的组合优化问题,提出并改进了约束规划和其他先进的基于约束的搜索方法。在约束规划方法中,通过指定可接受解的约束来建模问题,然后使用搜索来找到满足约束的解并优化代价函数。约束编程的一个重要特征是,人们可以首先关注声明性约束模型,然后为该模型开发一个有效的算法,要么是基于回溯搜索的完全最优算法,要么是基于局部搜索的不完全和近似算法。总的来说,这项研究将是以应用为导向的,并将解决实际的重要问题。这项研究将在上面提到的两个重要应用的指导下进行:从数据学习贝叶斯网络结构和从受正则化约束的数据学习决策树。科学的方法将包括:开发改进的约束模型,改进搜索过程中使用的上下限,调查替代搜索空间,研究以约束的形式并入先验领域知识的方法,通过生成k-Best模型进行模型平均的方法,将方法扩展到其他有向无环概率图形模型,如Sigmoid信念网络,以及将方法扩展到其他决策树模型,如多变量决策树。*研究项目的主要目标是开发更快的算法来寻找解,找到最优或更高质量的解的算法,以及在实践中更广泛应用的算法。对底层求解算法的任何改进都有可能改进这些机器学习方法的许多应用。这项工作的第二个目标是进一步开发对类似优化问题具有普遍适用性的约束编程技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

vanBeek, Peter其他文献

vanBeek, Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('vanBeek, Peter', 18)}}的其他基金

Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint Programming for Probabilistic Reasoning and Compiler Optimization
概率推理和编译器优化的约束编程
  • 批准号:
    105446-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint Programming for Probabilistic Reasoning and Compiler Optimization
概率推理和编译器优化的约束编程
  • 批准号:
    105446-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint Programming for Probabilistic Reasoning and Compiler Optimization
概率推理和编译器优化的约束编程
  • 批准号:
    105446-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint Programming for Probabilistic Reasoning and Compiler Optimization
概率推理和编译器优化的约束编程
  • 批准号:
    105446-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint Programming for Probabilistic Reasoning and Compiler Optimization
概率推理和编译器优化的约束编程
  • 批准号:
    105446-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constraint programming: models and algorithms
约束编程:模型和算法
  • 批准号:
    105446-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
内容分发网络中的P2P分群分发技术研究
  • 批准号:
    61100238
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
  • 批准号:
    10402036
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rational optimization of combinatorial therapies for the treatment of rare cystic fibrosis variants
合理优化治疗罕见囊性纤维化变异的组合疗法
  • 批准号:
    10736732
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mixed-Clairvoyance Task Offloading and Scheduling in Multi-access Edge Computing Systems: From Combinatorial Optimization to Machine Learning
多访问边缘计算系统中的混合千里眼任务卸载和调度:从组合优化到机器学习
  • 批准号:
    20K19794
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Machine Learning Theory with Connections to Algorithmic Game Theory and Combinatorial Optimization
职业:机器学习理论与算法博弈论和组合优化的联系
  • 批准号:
    1451177
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
CAREER: Machine Learning Theory with Connections to Algorithmic Game Theory and Combinatorial Optimization
职业:机器学习理论与算法博弈论和组合优化的联系
  • 批准号:
    0953192
  • 财政年份:
    2009
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Development and Evaluations of Efficient Algorithms for Combinatorial Optimization Problems
组合优化问题的高效算法的开发和评估
  • 批准号:
    06680311
  • 财政年份:
    1994
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Integrating machine learning in combinatorial dynamic optimization for urban transportation services
将机器学习集成到城市交通服务的组合动态优化中
  • 批准号:
    510629371
  • 财政年份:
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了