Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
基本信息
- 批准号:RGPIN-2018-03773
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
*** Singularities are ubiquitous in nonlinear PDEs. They appear in the form of sharp interfaces, vortices, spikes, finite or infinite time blowup, etc.****** The long-term goal of my research program is to develop unified methods to study singularity formations in a diverse range of problems. The mathematical tools will include gluing methods (finite or infinite dimensional), nonlinear analysis, geometric and variational methods.****** The proposed research consists of five overlapping themes:****** I (De Giorgi Conjecture): Continue the study of De Giorgi conjectures for the Allen-Cahn (AC) equation. After the classification of monotone solutions, it is natural to classify global minimizers or stable or finite Morse index solutions. Then we use it to study De Giorgi type conjectures for Lane-Emden equations. We are also interested in the applications of AC to the constructions of geodesics or minimal surfaces on Riemannian manifolds. Another example is the over-determined problem for which constant mean-curvature surfaces play an important role. Our ultimate aim is to solve the Berestycki-Caffarelli-Nirenberg conjecture completely. *********II (Nonlocal Equations): Study singularities in nonlocal PDEs such as fractional Yamabe problems (existence, compactness, singular solutions), fractional minimal surfaces (stable cones, minimal graphs, foliations), Type II blowups for half-harmonic maps, the De Giorgi Conjecture for fractional AC, fractional gluing, travelling waves to fractional bistable AC.*********III (Type II Blow-up): Develop new techniques in analyzing Type II blow-ups in parabolic equations such as harmonic map flows, Keller-Segel, nonlinear Fujita equation with critical or supercritical nonlinearities, the Euler equation. Our goal is to determine whether or not singularities appear, and to describe the properties of***the blowup, such as the rate, profile and stability character of blowups. Previously only symmetric cases (radial) have been analyzed. Our aim is to develop general techniques to deal with generic situations. ******IV (Toda Systems): Classify and analyze solutions of Toda systems with a general Lie algebra. Previous results only gave classification of $A_n$ Toda with one singularity. Our focus will be classification of Toda with a general Lie group and with more than one singularity. Then we shall use it to study non-compactness of Toda systems on manifolds and compute their Leray-Schauder degrees. We also want to construct bubbling solutions and non-topological solutions for Chern-Simons-Higgs systems. ******V (Reaction-Diffusion Systems): Analyze new localized patterns associated with reaction diffusion (RD) systems. New perspectives include: stability of lattice solutions in two dimensional space, existence, stability and continuum limits of clustered spikes, the effects of delays in theactivators/inhibitors, the effect of geometry for RD on closed manifolds, nonlocal RD systems, etc.**
***奇异性在非线性PDE中无处不在。它们以尖锐的界面,涡流,尖峰,有限或无限的时间爆炸等形式出现。 数学工具将包括粘合方法(有限或无限维度),非线性分析,几何和变异方法。****** **********拟议的研究由五个重叠的主题组成:****** i(de giorgi cosiventure):继续对全giorgi的猜想研究全伦(Aclen-cahn(Ac))。分类单调溶液后,自然将全球最小化器或稳定或有限的摩尔斯索引解决方案进行分类是很自然的。 然后,我们使用它来研究de giorgi类型的猜想。我们还对AC在Riemannian歧管上的地球学或最小表面的构造中的应用感兴趣。 另一个例子是过度确定的问题,恒定均曲面表面起着重要作用。我们的最终目的是完全解决Berestycki-Caffarelli-Nirenberg的猜想。 *********II (Nonlocal Equations): Study singularities in nonlocal PDEs such as fractional Yamabe problems (existence, compactness, singular solutions), fractional minimal surfaces (stable cones, minimal graphs, foliations), Type II blowups for half-harmonic maps, the De Giorgi Conjecture for fractional AC, fractional gluing, travelling waves to fractional Biscable Ac。******** III(II型爆炸):在分析抛物线式方程中的II型爆炸时开发新技术,例如谐波映射流,凯勒 - 塞格,非线性fujita方程,具有关键或超临界非线性,Euler方程。我们的目标是确定是否出现奇异性,并描述***爆炸的特性,例如爆炸的速率,轮廓和稳定性。以前仅分析了对称病例(径向)。我们的目的是开发一般技术来处理通用情况。 ****** iv(TODA系统):用一般谎言代数对TODA系统的解决方案进行分类和分析。先前的结果仅给出了一个奇异性的$ a_n $ toda的分类。我们的重点是将TODA与一个普通的谎言组和多个奇异性分类。 然后,我们将使用它来研究TODA系统在流形上的非紧密度,并计算其Leray-Schauder学位。我们还希望为Chern-Simons-Higgs系统构建冒泡的解决方案和非亲人解决方案。 ****** V(反应扩散系统):分析与反应扩散(RD)系统相关的新局部模式。新的观点包括:晶格解决方案在二维空间,存在,稳定性和簇状尖峰的连续限制中的稳定性,造物延迟/抑制剂中延迟的影响,RD几何形状对封闭歧管,非局部RD系统等,非局部RD系统等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WEI, Juncheng其他文献
WEI, Juncheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WEI, Juncheng', 18)}}的其他基金
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
非线性多智能体约束系统的模糊自适应双向编队控制
- 批准号:62203201
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非线性多智能体约束系统的模糊自适应双向编队控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高阶摄动突变下大椭圆编队飞行非线性相对运动及稳定性
- 批准号:12102445
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
高阶摄动突变下大椭圆编队飞行非线性相对运动及稳定性
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多智能体技术的非线性无人机编队智能容错控制及路径规划
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Relation between pattern formations and complex singularities of solutions of nonlinear partial differential equations
非线性偏微分方程解的模式结构与复奇点之间的关系
- 批准号:
16K13778 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research