Singularity Formations in Nonlinear Elliptic and Parabolic Equations

非线性椭圆方程和抛物线方程中的奇异性形成

基本信息

  • 批准号:
    RGPIN-2018-03773
  • 负责人:
  • 金额:
    $ 5.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Singularities are ubiquitous in nonlinear PDEs. They appear in the form of sharp interfaces, vortices, spikes, finite or infinite time blowup, etc. The long-term goal of my research program is to develop unified methods to study singularity formations in a diverse range of problems. The mathematical tools will include gluing methods (finite or infinite dimensional), nonlinear analysis, geometric and variational methods. The proposed research consists of five overlapping themes: I (De Giorgi Conjecture): Continue the study of De Giorgi conjectures for the Allen-Cahn (AC) equation. After the classification of monotone solutions, it is natural to classify global minimizers or stable or finite Morse index solutions. Then we use it to study De Giorgi type conjectures for Lane-Emden equations. We are also interested in the applications of AC to the constructions of geodesics or minimal surfaces on Riemannian manifolds. Another example is the over-determined problem for which constant mean-curvature surfaces play an important role. Our ultimate aim is to solve the Berestycki-Caffarelli-Nirenberg conjecture completely. II (Nonlocal Equations): Study singularities in nonlocal PDEs such as fractional Yamabe problems (existence, compactness, singular solutions), fractional minimal surfaces (stable cones, minimal graphs, foliations), Type II blowups for half-harmonic maps, the De Giorgi Conjecture for fractional AC, fractional gluing, travelling waves to fractional bistable AC.III (Type II Blow-up): Develop new techniques in analyzing Type II blow-ups in parabolic equations such as harmonic map flows, Keller-Segel, nonlinear Fujita equation with critical or supercritical nonlinearities, the Euler equation. Our goal is to determine whether or not singularities appear, and to describe the properties ofthe blowup, such as the rate, profile and stability character of blowups. Previously only symmetric cases (radial) have been analyzed. Our aim is to develop general techniques to deal with generic situations. IV (Toda Systems): Classify and analyze solutions of Toda systems with a general Lie algebra. Previous results only gave classification of $A_n$ Toda with one singularity. Our focus will be classification of Toda with a general Lie group and with more than one singularity. Then we shall use it to study non-compactness of Toda systems on manifolds and compute their Leray-Schauder degrees. We also want to construct bubbling solutions and non-topological solutions for Chern-Simons-Higgs systems. V (Reaction-Diffusion Systems): Analyze new localized patterns associated with reaction diffusion (RD) systems. New perspectives include: stability of lattice solutions in two dimensional space, existence, stability and continuum limits of clustered spikes, the effects of delays in theactivators/inhibitors, the effect of geometry for RD on closed manifolds, nonlocal RD systems, etc.
奇异性在非线性偏微分方程中是普遍存在的。它们以尖锐界面、旋涡、尖峰、有限或无限时间爆破等形式出现。 我的研究计划的长期目标是开发统一的方法来研究各种问题中的奇点形成。 数学工具将包括胶合方法(有限或无限维),非线性分析,几何和变分方法。 本研究由五个相互重叠的主题组成:I(De Giorgi猜想):继续研究Allen-Cahn(AC)方程的De Giorgi猜想。在对单调解进行分类之后,很自然地可以对全局极小解或稳定解或有限莫尔斯指标解进行分类。 然后用它研究了Lane-Emden方程的De Giorgi型解。我们也对AC在黎曼流形上的测地线或极小曲面的构造中的应用感兴趣。 另一个例子是常平均曲率曲面起着重要作用的超定问题。我们的最终目标是完全解决Berestycki-Caffarelli-Nirenberg猜想。II(非局部方程):研究非局部偏微分方程中的奇异性,如分数Yamabe问题(存在性,紧性,奇异解),分数极小曲面(稳定锥,极小图,叶理),半调和映射的II型爆破,分数AC的De Giorgi猜想,分数粘合,行波到分数AC。III(II型爆破):发展分析抛物型方程II型爆破的新技术,如调和映射流,Keller-Segel,具有临界或超临界非线性的非线性藤田方程,欧拉方程。我们的目标是确定是否有奇点出现,并描述爆破的性质,如爆破的速率,轮廓和稳定性特征。以前只分析了对称情况(径向)。我们的目标是开发通用技术来处理一般情况。IV(户田系统):用一般李代数对户田系统的解进行分类和分析。以前的结果只给出了具有一个奇点的$A_n$户田的分类。我们的重点将是分类的户田与一般李群和一个以上的奇点。 然后利用它来研究流形上户田系统的非紧性,并计算它们的Leray-Schauder度。我们还想构造Chern-Simons-Higgs系统的冒泡解和非拓扑解。V(反应扩散系统):分析与反应扩散(RD)系统相关的新局部模式。新观点包括:二维空间中格点解的稳定性,簇状尖峰的存在性、稳定性和连续极限,活化剂/抑制剂中时滞的影响,闭流形上RD的几何效应,非局部RD系统等.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei, Juncheng其他文献

DELAYED REACTION KINETICS AND THE STABILITY OF SPIKES IN THE GIERER-MEINHARDT MODEL
  • DOI:
    10.1137/16m1063460
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Fadai, Nabil T.;Ward, Michael J.;Wei, Juncheng
  • 通讯作者:
    Wei, Juncheng
Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in
具有临界指数的非合作耦合椭圆系统的非径向全解
A critical elliptic problem for polyharmonic operators
多调和算子的关键椭圆问题
  • DOI:
    10.1016/j.jfa.2011.01.005
  • 发表时间:
    2011-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Ge, Yuxin;Wei, Juncheng;Zhou, Feng
  • 通讯作者:
    Zhou, Feng
A TIME-DELAY IN THE ACTIVATOR KINETICS ENHANCES THE STABILITY OF A SPIKE SOLUTION TO THE GIERER-MEINHARDT MODEL
MIXED INTERIOR AND BOUNDARY NODAL BUBBLING SOLUTIONS FOR A sinh-POISSON EQUATION
sinh-泊松方程的混合内部和边界节点起泡解
  • DOI:
    10.2140/pjm.2011.250.225
  • 发表时间:
    2011-03
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Wei, Juncheng;Wei, Long;Zhou, Feng
  • 通讯作者:
    Zhou, Feng

Wei, Juncheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei, Juncheng', 18)}}的其他基金

Nonlinear Partial Differential Equations
非线性偏微分方程
  • 批准号:
    CRC-2019-00415
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Nonlinear Partial Differential Equations
非线性偏微分方程
  • 批准号:
    CRC-2019-00415
  • 财政年份:
    2021
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2021
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Partial Differential Equations
非线性偏微分方程
  • 批准号:
    CRC-2019-00415
  • 财政年份:
    2020
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Nonlinear Partial Differential Equations, Concentration Phenomena, and Applications
非线性偏微分方程、浓度现象及应用
  • 批准号:
    1000228597-2012
  • 财政年份:
    2020
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2019
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Partial Differential Equations, Concentration Phenomena, and Applications
非线性偏微分方程、浓度现象及应用
  • 批准号:
    1000228597-2012
  • 财政年份:
    2019
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Mathematical Analysis and Applications of Concentration Phenomena in Nonlinear Elliptic Equations
非线性椭圆方程集中现象的数学分析及应用
  • 批准号:
    435557-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Partial Differential Equations, Concentration Phenomena, and Applications
非线性偏微分方程、浓度现象及应用
  • 批准号:
    1000228597-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Canada Research Chairs
Mathematical Analysis and Applications of Concentration Phenomena in Nonlinear Elliptic Equations
非线性椭圆方程集中现象的数学分析及应用
  • 批准号:
    435557-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

The Modernist Formations by Diasporic African American Writers
海外非裔美国作家的现代主义形成
  • 批准号:
    23K12133
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A novel design approach for sustainable and resilient railway formations
可持续和有弹性的铁路编组的新颖设计方法
  • 批准号:
    LP220100334
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Linkage Projects
Understanding the Changing Formations of Race and Racism in Contemporary Britain through the Prism of Anti-Racist Organising
通过反种族主义组织的棱镜了解当代英国种族和种族主义不断变化的形态
  • 批准号:
    2901781
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Studentship
Investigation of the molecular formations and the pathomechanisms of the neuromuscular junction
神经肌肉接头的分子形成和病理机制的研究
  • 批准号:
    23H02794
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analogies between Comparisons as Mechanisms of “Departicularization”? On the Construction of Resonances between Colonial and Metropolitan Formations of Comparisons in National “Founding Debates” in the German Empire (1871-1918). (F07#)
作为“去特定化”机制的比较之间的类比?
  • 批准号:
    500636732
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Collaborative Research Centres
Dynamic Fracture Characterization and Integrated Optimization of Enhanced Oil Recovery Performance in Tight Formations under Uncertainty
不确定性条件下致密地层动态裂缝表征及提高采收率综合优化
  • 批准号:
    RGPIN-2019-07150
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Carbon Carbon Bond Formations for Novel Se-, S-, and O-Heterocycle Synthesis
用于新型 Se-、S- 和 O-杂环合成的高效碳碳键形成的开发
  • 批准号:
    10683083
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
Synthesis of Functional Molecules by Electrochemical Carbon-Heteroatom Bond Formations
通过电化学碳-杂原子键形成功能分子的合成
  • 批准号:
    22H02122
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Impact of Shear-Induced Pore Pressures on the Ground Deformations Around Underground Excavations in Shale Rock Formations for Long-Term Nuclear Waste Storage
剪切引起的孔隙压力对长期核废料储存页岩岩层地下开挖周围地面变形的影响
  • 批准号:
    558519-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Rethinking the Genesis of Banded Iron Formations: Simulating Partial Fe(II) Oxidation and Secondary Reactions of Iron-Silica Precipitates
重新思考带状铁形成的成因:模拟铁-二氧化硅沉淀物的部分 Fe(II) 氧化和二次反应
  • 批准号:
    2142509
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了