Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics

非线性数学模型的制定和分析及其在人口动态中的应用

基本信息

  • 批准号:
    RGPIN-2016-05769
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

My research focuses on developing and analyzing mathematical models to study population dynamics. I am interested in how model assumptions influence the predictions, especially the entire range of possible dynamics. Many processes involve time delays that are ignored in models for mathematical tractability. I have been investigating the consequences of ignoring these delays as well as how the delays are modeled, i.e., using different distributions. Many mathematical functions used in models are not mechanistically justified, but rather only their basic form is suggested from data. I have been investigating the implications of using different choices for the mathematical forms (with the same properties) on model predictions. Is one form more likely to predict extinction of species than another? Is one form more likely to predict that a population size oscillates as opposed to approaching a constant population size? Is this influence consistent or model dependent? ***One goal is to reconcile commonly believed general principles with conflicting experimental observations, and to suggest new or modified principles. Another goal is to develop measurable criteria that would enable scientists to predict which combination of microorganisms would be most effective and safest for use in such processes as water purification, biological waste decomposition, and biological remediation. Other potential applications include pest control on the one hand and the prevention of the extinction of endangered species on the other. Recently, I have become interested in modelling: anaerobic digestion related to the production of green energy from animal waste; self-cylcing fermentation used for water purification; exploring the effect of access to light on phytoplankton blooms; and exploring the predictions of various predator-prey and competition models. More generally, I am interested in trying to understand the causes of oscillatory behavior and chaotic dynamics.***To explore the dynamics of the models, the qualitative theory of differential equations is used to determine local and if possible global dynamics of the models; persistence theory when appropriate to predict when certain species avoid extinction; bifurcation theory to determine the full spectrum of model behavior and to help identify which key parameters need to be measured and how accurately, in order to improve predictions. Use is made of specialized software to obtain bifurcation diagrams, computer simulations to elucidate complex dynamics, to test conjectures, and to reveal properties that help to develop analytic proofs, and symbolic computation to verify lengthy calculations. The analyses often lead to interesting abstract mathematical problems in dynamical systems, ordinary, impulsive, integro, and functional differential equations.********
我的研究重点是开发和分析研究种群动态的数学模型。我感兴趣的是模型假设如何影响预测,特别是整个可能的动态范围。许多过程涉及时间延迟,而这些时间延迟在数学处理模型中被忽略。我一直在调查忽略这些延迟的后果,以及延迟是如何建模的,即使用不同的分布。模型中使用的许多数学函数并不是机械地证明是合理的,而是从数据中得出它们的基本形式。我一直在研究在模型预测中使用不同的数学形式选择(具有相同的属性)的含义。一种形式比另一种形式更有可能预测物种的灭绝吗?是否有一种形式更有可能预测人口规模的波动,而不是接近恒定的人口规模?这种影响是一致的还是依赖于模型的?*一个目标是调和普遍认为的一般原则与相互冲突的实验观察,并提出新的或修改后的原则。另一个目标是制定可测量的标准,使科学家能够预测哪种微生物组合在水净化、生物废物分解和生物修复等过程中使用最有效和最安全。其他潜在的应用包括一方面控制虫害,另一方面防止濒危物种灭绝。最近,我开始对建模感兴趣:与利用动物粪便生产绿色能量有关的厌氧消化;用于净水的自循环发酵;探索光照对浮游植物水华的影响;以及探索各种捕食者-猎物和竞争模型的预测。更广泛地说,我感兴趣的是试图了解振荡行为和混沌动力学的原因。*为了探索模型的动力学,微分方程组的定性理论被用来确定模型的局部动力学,如果可能的话,用来确定模型的全局动力学;持续性理论在适当的时候用来预测某些物种何时避免灭绝;分歧理论用来确定模型行为的全谱,并帮助确定哪些关键参数需要测量以及如何准确,以便改进预测。使用专门的软件来获得分叉图,使用计算机模拟来阐明复杂的动力学,测试猜想,揭示有助于开发分析证明的性质,并使用符号计算来验证冗长的计算。这些分析经常导致动力系统中有趣的抽象数学问题,如普通的、脉冲的、积分的和泛函微分方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wolkowicz, Gail其他文献

Wolkowicz, Gail的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wolkowicz, Gail', 18)}}的其他基金

Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2022-05067
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    493019-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    493019-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling in population dynamics
人口动态的数学模型
  • 批准号:
    9358-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling in population dynamics
人口动态的数学模型
  • 批准号:
    9358-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2022-05067
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    493019-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    493019-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
FORMULATION AND NUMERICAL ANALYSIS OF NONLINEAR VIBRATION RESPONSES OF THE INTERACTIVE BEHAVIOR BETWEEN A POTENTIAL FLUID AND THE CYLINDRICAL SHELL CONTAINER IN LARGE DEFORMATIONS
大变形下势流体与圆柱壳容器相互作用非线性振动响应的公式化及数值分析
  • 批准号:
    23560677
  • 财政年份:
    2011
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Nonlinear Transient Dynamic Analysis for Structural Optimization Using an Exact Integral Equation Formulation
使用精确积分方程公式进行结构优化的高效非线性瞬态动态分析
  • 批准号:
    9713481
  • 财政年份:
    1998
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Interagency Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了