New challenges and methods for the analysis of longitudinal and survival data

纵向和生存数据分析的新挑战和方法

基本信息

  • 批准号:
    RGPIN-2016-03781
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Longitudinal studies are widely used in practice, especially in health related research. In a longitudinal *study, we collect data on a set of variables repeatedly over time, *and we are often interested in how the values of the variables change over time. *In addition, we may also observe certain events of interest, *such as dropouts and infection of a disease.*In many studies, the longitudinal trajectories and the times to *the events are associated, so some longitudinal variables may be used as *potential markers for the events of interest. For example, *in HIV/AIDS studies, CD4 and viral load data are usually collected over time, *and their longitudinal trajectories may be associated with times to AIDS or deaths. *In lung cancer studies, the histories and progressions of pre-invasive lesions may be associated *with occurrences of lung cancer. In these studies, it is important to detect the disease in early *stages, so a major goal is to identify markers or risk predictors for progression *to AIDS or cancer. For statistical analyses of these data, *joint models of longitudinal and survival data are required in order to obtain *unbiased results. ** There has been extensive research in the literature for *joint models of longitudinal and survival data in recent years. However, *new challenges in statistical analysis continue to arise in practice, due to*the complexity of longitudinal and survival data in many longitudinal studies. *In these cases, existing statistical models and methods cannot be used or undesirable. For example, (i)*the variables of interest may be discrete or continuous or other mixed types; (ii) the longitudinal data may be censored, e.g., viral load may drop below a limit of detection in AIDS*studies, or may be semi-continuous; (iii) the longitudinal data may contain measurement errors, missing data, and outliers;*(iv) the model parameters may be constrained by biological laws; (v) there may be spatial dependence as well as longitudinal dependence; and (vi)*the computation in statistical inference can be quite challenging. *Thus, new or better statistical models and methods need to be developed to address these issues. In this proposal, motivated by several*current HIV/AIDS datasets and cancer datasets, we propose to develop a series of new joint models and methods to *address the foregoing issues. Once developed, these new models and methods may have important*impacts in AIDS and cancer research, since they may lead to new insights and findings which are unavailable based on existing models and methods. ***
纵向研究在实践中广泛应用,特别是在健康相关研究中。在纵向研究中,我们随着时间的推移重复收集一组变量的数据,并且我们通常对变量的值如何随时间变化感兴趣。 *此外,我们还可能观察某些感兴趣的事件,*例如辍学和疾病感染。*在许多研究中,纵向轨迹和*事件发生的时间是相关的,因此一些纵向变量可以用作*感兴趣事件的潜在标记。例如,*在 HIV/AIDS 研究中,CD4 和病毒载量数据通常是随着时间的推移而收集的,*它们的纵向轨迹可能与艾滋病或死亡的时间相关。 *在肺癌研究中,浸润前病变的历史和进展可能与肺癌的发生有关。在这些研究中,在早期阶段检测疾病非常重要,因此主要目标是确定进展为艾滋病或癌症的标记物或风险预测因子。对于这些数据的统计分析,*需要纵向数据和生存数据的联合模型,以获得*无偏结果。 ** 近年来,文献中对纵向和生存数据的联合模型进行了广泛的研究。然而,由于许多纵向研究中纵向和生存数据的复杂性,*在实践中不断出现统计分析的新挑战。 *在这些情况下,现有的统计模型和方法无法使用或不可取。例如,(i)*感兴趣的变量可以是离散的或连续的或其他混合类型; (ii) 纵向数据可能会被审查,例如,病毒载量可能会降至艾滋病*研究中的检测限以下,或者可能是半连续的; (iii) 纵向数据可能包含测量误差、缺失数据和异常值;*(iv) 模型参数可能受到生物定律的约束; (v) 可能存在空间依赖性以及纵向依赖性; (vi)*统计推断中的计算可能非常具有挑战性。 *因此,需要开发新的或更好的统计模型和方法来解决这些问题。在本提案中,在几个*当前的艾滋病毒/艾滋病数据集和癌症数据集的推动下,我们建议开发一系列新的联合模型和方法来*解决上述问题。一旦开发出来,这些新模型和方法可能会对艾滋病和癌症研究产生重要影响,因为它们可能会带来现有模型和方法无法获得的新见解和发现。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wu, Lang其他文献

A Double-Neighborhood Gradient Method for Infrared Small Target Detection
Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis
Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk
Variation in Reproductive Traits between Populations of Neosalanx taihuensis above and below the Three-Gorges Dam
  • DOI:
    10.1080/02705060.2009.9664329
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Gong, Wangbao;Wu, Lang;Xie, Songguang
  • 通讯作者:
    Xie, Songguang
Enabling programmable dynamic DNA chemistry using small-molecule DNA binders.
  • DOI:
    10.1038/s41467-023-40032-3
  • 发表时间:
    2023-07-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xu, Junpeng;Wang, Guan Alex;Gao, Lu;Wu, Lang;Lei, Qian;Deng, Hui;Li, Feng
  • 通讯作者:
    Li, Feng

Wu, Lang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wu, Lang', 18)}}的其他基金

Some new models and methods for complex longitudinal and survival data
复杂纵向和生存数据的一些新模型和方法
  • 批准号:
    RGPIN-2022-03574
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10586025
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10410110
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10322454
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Highly Portable and Cloud-Enabled Neuroimaging Research: Confronting Ethics Challenges in Field Research with New Populations
高度便携且支持云的神经影像研究:面对新人群现场研究的伦理挑战
  • 批准号:
    10035136
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了