New challenges and methods for the analysis of longitudinal and survival data

纵向和生存数据分析的新挑战和方法

基本信息

  • 批准号:
    RGPIN-2016-03781
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Longitudinal studies are widely used in practice, especially in health related research. In a longitudinal *study, we collect data on a set of variables repeatedly over time, *and we are often interested in how the values of the variables change over time. *In addition, we may also observe certain events of interest, *such as dropouts and infection of a disease.*In many studies, the longitudinal trajectories and the times to *the events are associated, so some longitudinal variables may be used as *potential markers for the events of interest. For example, *in HIV/AIDS studies, CD4 and viral load data are usually collected over time, *and their longitudinal trajectories may be associated with times to AIDS or deaths. *In lung cancer studies, the histories and progressions of pre-invasive lesions may be associated *with occurrences of lung cancer. In these studies, it is important to detect the disease in early *stages, so a major goal is to identify markers or risk predictors for progression *to AIDS or cancer. For statistical analyses of these data, *joint models of longitudinal and survival data are required in order to obtain *unbiased results. ** There has been extensive research in the literature for *joint models of longitudinal and survival data in recent years. However, *new challenges in statistical analysis continue to arise in practice, due to*the complexity of longitudinal and survival data in many longitudinal studies. *In these cases, existing statistical models and methods cannot be used or undesirable. For example, (i)*the variables of interest may be discrete or continuous or other mixed types; (ii) the longitudinal data may be censored, e.g., viral load may drop below a limit of detection in AIDS*studies, or may be semi-continuous; (iii) the longitudinal data may contain measurement errors, missing data, and outliers;*(iv) the model parameters may be constrained by biological laws; (v) there may be spatial dependence as well as longitudinal dependence; and (vi)*the computation in statistical inference can be quite challenging. *Thus, new or better statistical models and methods need to be developed to address these issues. In this proposal, motivated by several*current HIV/AIDS datasets and cancer datasets, we propose to develop a series of new joint models and methods to *address the foregoing issues. Once developed, these new models and methods may have important*impacts in AIDS and cancer research, since they may lead to new insights and findings which are unavailable based on existing models and methods. ***
纵向研究在实践中被广泛应用,特别是在健康相关研究中。在纵向研究中,我们在一段时间内重复收集一组变量的数据,我们通常对变量的值如何随时间变化感兴趣。* 此外,我们还可能观察某些感兴趣的事件,* 例如辍学和疾病感染。在许多研究中,纵向轨迹和事件发生的时间是相关联的,因此一些纵向变量可以用作感兴趣事件的潜在标记。例如,* 在艾滋病毒/艾滋病研究中,CD4和病毒载量数据通常是随着时间的推移而收集的,* 它们的纵向轨迹可能与艾滋病或死亡的时间有关。* 在肺癌研究中,浸润前病变的历史和进展可能与肺癌的发生有关 *。在这些研究中,重要的是在早期发现疾病,因此一个主要目标是确定进展为艾滋病或癌症的标志物或风险预测因子。对于这些数据的统计分析,需要 * 纵向和生存数据的联合模型,以获得 * 无偏结果。** 近年来,文献中对纵向和生存数据的 * 关节模型进行了广泛的研究。然而,由于许多纵向研究中纵向和生存数据的复杂性,统计分析中的新挑战在实践中不断出现。* 在这些情况下,现有的统计模型和方法不能使用或不可取。例如,(i)* 感兴趣的变量可以是离散的或连续的或其他混合类型;(ii)纵向数据可以被删失,例如,在艾滋病研究中,病毒载量可能下降到检测限以下,或者可能是半连续的;(iii)纵向数据可能包含测量误差、缺失数据和离群值;*(iv)模型参数可能受到生物学定律的约束;(v)可能存在空间依赖性以及纵向依赖性;以及(vi)* 统计推断中的计算可能相当具有挑战性。* 因此,需要开发新的或更好的统计模型和方法来解决这些问题。在这个提议中,我们基于当前的几个艾滋病数据集和癌症数据集,提出了一系列新的联合模型和方法来解决上述问题。这些新的模型和方法一旦开发出来,可能会对艾滋病和癌症研究产生重要的影响,因为它们可能会导致基于现有模型和方法无法获得的新的见解和发现。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wu, Lang其他文献

Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis
Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk
A Double-Neighborhood Gradient Method for Infrared Small Target Detection
Variation in Reproductive Traits between Populations of Neosalanx taihuensis above and below the Three-Gorges Dam
  • DOI:
    10.1080/02705060.2009.9664329
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Gong, Wangbao;Wu, Lang;Xie, Songguang
  • 通讯作者:
    Xie, Songguang
Enabling programmable dynamic DNA chemistry using small-molecule DNA binders.
  • DOI:
    10.1038/s41467-023-40032-3
  • 发表时间:
    2023-07-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xu, Junpeng;Wang, Guan Alex;Gao, Lu;Wu, Lang;Lei, Qian;Deng, Hui;Li, Feng
  • 通讯作者:
    Li, Feng

Wu, Lang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wu, Lang', 18)}}的其他基金

Some new models and methods for complex longitudinal and survival data
复杂纵向和生存数据的一些新模型和方法
  • 批准号:
    RGPIN-2022-03574
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Joint models for longitudinal and survival data with measurement errors, missing values, and outliers
具有测量误差、缺失值和异常值的纵向和生存数据的联合模型
  • 批准号:
    238677-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10586025
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10410110
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
  • 批准号:
    10322454
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
New challenges and methods for the analysis of longitudinal and survival data
纵向和生存数据分析的新挑战和方法
  • 批准号:
    RGPIN-2016-03781
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Highly Portable and Cloud-Enabled Neuroimaging Research: Confronting Ethics Challenges in Field Research with New Populations
高度便携且支持云的神经影像研究:面对新人群现场研究的伦理挑战
  • 批准号:
    10035136
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
  • 批准号:
    RGPIN-2018-06008
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了