Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices

基于仿真的多层二维柔性纳米电子器件的预测分析和优化

基本信息

  • 批准号:
    RGPIN-2014-05920
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The electronics industry has changed dramatically over the last decade, shifting its focus from high performance to mobile applications; today's technology drivers typically target low-power, lightweight, transparent and flexible functionality. In this regard, a new class of thin, 2D layered nanomaterials is favorable, offering numerous opportunities for emerging electronic devices.**Like highly confined conventional 3D semiconductors, electronic properties of layered materials change substantially with the thickness of material (i.e., the number of layers), but in a quite different manner such that the change of band structure is beyond the simple physical confinement effects. In addition, unlike single-layer materials, the transport properties of a multi-layer system are significantly affected by interactions between the neighboring layers. Furthermore, different combination of 2D materials, particularly those that include artificial lateral heterostructures (e.g., graphene and hexagonal boron nitride), may enable new functionality. Such novel 2D materials are promising for future electronic devices specifically on plastic substrates due to their thinness and flexibility. However, our understanding of multi-layer flexible electronic devices is still in its infancy and our current fabrication and engineering methods for these devices are far from optimal. Therefore, the proposed Discovery Grant program will pursue critical new fundamental understanding of the basic scientific and complex engineering problems underlying multi-layer 2D flexible nanoelectronics through highly efficient computer simulations.**The program will build upon the applicant's recent research in quantum transport simulations for emerging devices based on various nanomaterials including nanowires (1D), graphene (2D) and confined InAs (3D). From the simulation viewpoint, the investigation of multi-layer 2D nanoelectronics calls for fundamentally different approaches from single-layer or confined 3D semiconductor devices. Therefore, the investigation of quantum transport in multi-layer systems, especially in the presence of out-of-plane strain will indeed be groundbreaking in this field. In pursuing the program's overall goals, several shorter-term objectives will be addressed over the next five years, each of which will advance the state-of-knowledge on layered material electronics and provide a unique training environment for imparting leading edge skills in computational nanotechnology research: (1) To obtain fundamental understanding of layered-material flexible electronics with external stress through atomistic quantum transport simulations; (2) To provide accurate predictions and ultimate optimization of such nanodevices; (3) To develop a highly efficient parallel code to quickly solve large-scale diffusive transport problems of 2D flexible electronics; (4) To calibrate theoretical models with experiments.**Outcomes of this research program will provide deep insights into multi-layer 2D flexible electronics, laying critical groundwork for the future, ultra-portable and flexible electronic devices. Currently global semiconductor industry has a $300 billion market per year and the development of this research program will bring huge economic benefit to Canada's IT industries as the source of information is shifting rapidly from desktop to mobile devices. In addition, this research will help position Canada at the forefront of nanoelectronics research through HQP training; two PhD and three MASc and one Undergraduate Co-op students will be trained to acquire unique skills of numerical simulations including non-equilibrium Green's function method, and graduates from this program will be highly sought after by both research organization and industries.
电子行业在过去十年中发生了巨大变化,其重点从高性能转向移动应用。当今的技术驱动因素通常以低功耗、轻量级、透明和灵活的功能为目标。在这方面,一类新型薄型2D层状纳米材料是有利的,为新兴电子设备提供了众多机会。 **与高度受限的传统3D半导体一样,层状材料的电子特性随着材料厚度(即层数)的变化而发生显着变化,但以一种完全不同的方式变化,使得能带结构的变化超出了简单的物理限制效应。此外,与单层材料不同,多层系统的传输特性受到相邻层之间相互作用的显着影响。此外,二维材料的不同组合,特别是那些包含人工横向异质结构(例如石墨烯和六方氮化硼)的材料,可以实现新的功能。这种新颖的二维材料由于其薄度和灵活性而有望用于未来的电子设备,特别是塑料基板上的电子设备。然而,我们对多层柔性电子器件的理解仍处于起步阶段,并且我们目前这些器件的制造和工程方法还远非最佳。因此,拟议的发现资助计划将通过高效的计算机模拟,寻求对多层二维柔性纳米电子学基础科学和复杂工程问题的关键新的基本理解。 **该计划将建立在申请人最近对基于各种纳米材料(包括纳米线(1D)、石墨烯(2D)和受限InAs(3D))的新兴器件的量子输运模拟研究的基础上。从模拟的角度来看,多层 2D 纳米电子学的研究需要与单层或受限 3D 半导体器件根本不同的方法。因此,多层系统中量子输运的研究,特别是存在面外应变的情况下,确实将在该领域具有开创性。为了实现该计划的总体目标,未来五年将解决几个短期目标,每个目标都将推进层状材料电子学的知识水平,并为传授计算纳米技术研究的前沿技能提供独特的培训环境:(1)通过原子量子输运模拟获得对具有外部应力的层状材料柔性电子学的基本了解; (2) 提供此类纳米器件的准确预测和最终优化; (3)开发高效并行代码,快速解决二维柔性电子器件大规模扩散输运问题; (4) 通过实验校准理论模型。**该研究项目的成果将为多层二维柔性电子器件提供深入的见解,为未来的超便携式柔性电子设备奠定关键基础。目前全球半导体行业每年拥有3000亿美元的市场,随着信息来源迅速从桌面设备向移动设备转移,该研究项目的开展将为加拿大IT行业带来巨大的经济效益。此外,这项研究将通过 HQP 培训帮助加拿大处于纳米电子学研究的前沿;两名博士生、三名硕士生和一名本科生将接受培训,获得包括非平衡格林函数方法在内的数值模拟独特技能,该项目的毕业生将受到研究机构和行业的高度追捧。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoon, YoungKi其他文献

Yoon, YoungKi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yoon, YoungKi', 18)}}的其他基金

Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Multibody Dynamics, Predictive Simulation, and Model-based Control of Biomechanical Systems
生物力学系统的多体动力学、预测仿真和基于模型的控制
  • 批准号:
    RGPIN-2016-04332
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Multibody Dynamics, Predictive Simulation, and Model-based Control of Biomechanical Systems
生物力学系统的多体动力学、预测仿真和基于模型的控制
  • 批准号:
    RGPIN-2016-04332
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Multibody Dynamics, Predictive Simulation, and Model-based Control of Biomechanical Systems
生物力学系统的多体动力学、预测仿真和基于模型的控制
  • 批准号:
    RGPIN-2016-04332
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Multibody Dynamics, Predictive Simulation, and Model-based Control of Biomechanical Systems
生物力学系统的多体动力学、预测仿真和基于模型的控制
  • 批准号:
    RGPIN-2016-04332
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Based Predictive Analysis and Optimization of Multi-Layer 2D Flexible Nanoelectronic Devices
基于仿真的多层二维柔性纳米电子器件的预测分析和优化
  • 批准号:
    RGPIN-2014-05920
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: A Predictive Modeling and Simulation-Based Certification Framework for Additive Manufacturing of Metals
职业:基于预测建模和仿真的金属增材制造认证框架
  • 批准号:
    1652839
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Multibody Dynamics, Predictive Simulation, and Model-based Control of Biomechanical Systems
生物力学系统的多体动力学、预测仿真和基于模型的控制
  • 批准号:
    RGPIN-2016-04332
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical systematization for high-pressure thermodynamic data and predictive separation simulation with entropy-based solubility parameter
高压热力学数据的理论系统化和基于熵的溶解度参数的预测分离模拟
  • 批准号:
    17K06884
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multibody Dynamics, Predictive Simulation, and Model-based Control of Biomechanical Systems
生物力学系统的多体动力学、预测仿真和基于模型的控制
  • 批准号:
    RGPIN-2016-04332
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了