Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
基本信息
- 批准号:RGPIN-2017-05657
- 负责人:
- 金额:$ 0.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research proposal introduces new inference methods for dynamic processes that display nonlinear patterns, such as spikes in the trajectory, time varying volatility and/or level shifts. The methods include: 1) tests of trend and forecasts; 2) tests and estimators for dynamic models of these processes.******The tests of trend are designed for a category of processes, called stationary martingales. In general, all martingales are characterized by trends and can represent price dynamics. The stationary martingales display temporary (local) trends, which can end unexpectedly, while the non-stationary martingales, such as the random walks display global, long-lasting trends. Over a fixed observational period, it may be hard to distinguish between the two types of trend. In the context of prices of natural resources, such as crude oil, or commodities, such as wheat, a global trend represents sustainable growth, while a local trend represents an unsustainable, temporary upswing. The proposed research introduces tests that detect growth of either type, and help determine if that growth is sustainable or not. Distinguishing between these patterns is important for natural resource management and economic policy making. For example, sustainable growth of crude oil prices would encourage exploitation of new oil fields whereas temporary price growth does not. Recent episode of low oil prices has strongly impacted Canadian economy, the Canadian Dollar and consumer price indexes. The empirical evidence from the past ten years reveals the local trends in crude oil prices and motivates my applied research on oil price dynamics, which will help determine if increased crude oil production in B.C. in 2016 due to recent oil discovery can support long-lasting economic growth.******For the stationary martingale models and other models of fat-tailed processes, a specification test and a new type of estimators are proposed. These methods are robust, i.e valid under weak assumptions. They are applicable to models of financial returns with extreme risks introduced to the banking system by the supervisory Financial Stability Board for stress testing, such as the unobserved factor models of systemic risk. The proposed methods will enhance the tools of empirical analysis used by Canadian banks and the Office of the Superintendent of Financial Institutions (OSFI). ******Academically, the proposed research will contribute to the statistical theory of inference and estimation through publications in top ranked statistical and econometric journals. Empirically, the new methods address the needs of the banking sector and of the Canadian natural resource management. The trend analysis of energy prices will provide new insights for policy makers who seek to protect the environment and support economic growth, in line with the Government of Canada's Review of Environmental and Regulatory Processes (2016) (www.canada.ca).**
本研究建议为动态过程引入新的推理方法,这些动态过程显示非线性模式,如轨迹中的峰值、时变波动和/或水平变化。方法包括:1)趋势检验和预测;2)这些过程的动态模型的检验和估计。******趋势测试是为一类称为平稳鞅的过程设计的。一般来说,所有鞅都具有趋势特征,可以表示价格动态。平稳鞅显示临时的(局部的)趋势,这种趋势可能会意外地结束,而非平稳鞅,如随机漫步,则显示全局的、持久的趋势。在一个固定的观测期内,可能很难区分这两种趋势。就原油等自然资源或小麦等商品的价格而言,全球趋势代表可持续增长,而局部趋势则代表不可持续的暂时上涨。拟议的研究引入了检测两种类型增长的测试,并帮助确定这种增长是否可持续。区分这些模式对自然资源管理和经济政策制定很重要。例如,原油价格的持续增长将鼓励新油田的开发,而暂时的价格增长则不会。最近的低油价严重影响了加拿大经济、加元和消费者价格指数。过去十年的经验证据揭示了当地原油价格的趋势,并激发了我对油价动态的应用研究,这将有助于确定bc省2016年由于最近的石油发现而增加的原油产量是否可以支持长期的经济增长。******对于平稳鞅模型和其他厚尾过程模型,提出了一种规格检验和一种新的估计量。这些方法是稳健的,即在弱假设下是有效的。它们适用于监管机构金融稳定委员会(financial Stability Board)为压力测试向银行体系引入的具有极端风险的金融回报模型,例如系统性风险的未观察因子模型。拟议的方法将加强加拿大银行和金融机构监督办公室(OSFI)使用的实证分析工具。******在学术上,建议的研究将通过在顶级统计和计量经济学期刊上发表文章,为推断和估计的统计理论做出贡献。从经验上看,新方法解决了银行部门和加拿大自然资源管理的需要。能源价格的趋势分析将为寻求保护环境和支持经济增长的政策制定者提供新的见解,符合加拿大政府的环境和监管程序审查(2016)(www.canada.ca)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jasiak, Joann其他文献
Jasiak, Joann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jasiak, Joann', 18)}}的其他基金
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2022
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2021
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2020
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2018
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2017
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Estimation and testing in nonlinear time series models
非线性时间序列模型的估计和测试
- 批准号:
356031-2008 - 财政年份:2012
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Estimation and testing in nonlinear time series models
非线性时间序列模型的估计和测试
- 批准号:
356031-2008 - 财政年份:2011
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Estimation and testing in nonlinear time series models
非线性时间序列模型的估计和测试
- 批准号:
356031-2008 - 财政年份:2010
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Estimation and testing in nonlinear time series models
非线性时间序列模型的估计和测试
- 批准号:
356031-2008 - 财政年份:2009
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Estimation and testing in nonlinear time series models
非线性时间序列模型的估计和测试
- 批准号:
356031-2008 - 财政年份:2008
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-regular robust methods for locally stationary generalized unit root related processes and their applications to large-scale data
局部平稳广义单位根相关过程的非正则鲁棒方法及其在大规模数据中的应用
- 批准号:
23K11004 - 财政年份:2023
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2022
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2021
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2020
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Development of point process models and prediction methods for non-stationary seismic activity
非平稳地震活动点过程模型和预测方法的开发
- 批准号:
20K11722 - 财政年份:2020
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ATD: Algorithm, Analysis, and Prediction for Nonlinear and Non-Stationary Signals via Data-Driven Iterative Filtering Methods
ATD:通过数据驱动的迭代滤波方法对非线性和非平稳信号进行算法、分析和预测
- 批准号:
1830225 - 财政年份:2018
- 资助金额:
$ 0.68万 - 项目类别:
Continuing Grant
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2018
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2017
- 资助金额:
$ 0.68万 - 项目类别:
Discovery Grants Program - Individual
Locally Stationary Time Series and Multiscale Methods for Statistics (LuSTruM)
局部平稳时间序列和多尺度统计方法 (LuSTruM)
- 批准号:
EP/K020951/1 - 财政年份:2013
- 资助金额:
$ 0.68万 - 项目类别:
Fellowship
Toward computer intensive methods in economic analysis, with special focus on non-Gaussian, non-stationary and non-linear factors
经济分析中的计算机密集型方法,特别关注非高斯、非平稳和非线性因素
- 批准号:
24651175 - 财政年份:2012
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




