Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena

纳米现象的统计建模、推理和分析

基本信息

  • 批准号:
    RGPIN-2014-04225
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

With the current state-of-the-art in nanoscopic measurement technology, researchers are able to observe the dynamics of molecules and atoms with unprecedented accuracy and reproducibility. These nanoscopic experiments present formidable challenges and opportunities for statistical modeling. On one hand, randomness naturally emerges from deterministic physical systems in which countless degrees of freedom are unobserved. On the other, departures from ideal experimental conditions require a detailed analysis of measurement error. Ultimately, the scientific goal is to describe a dynamical phenomenon with an explanatory model. This research program will address two important challenges to achieving this goal: efficient statistical inference for stochastic physical models, and effective evaluation of the agreement between theoretical models and experimental data.**Specifically, the statistical models for nanoscopic phenomena are given in continuous time, whereas recorded data is almost always discrete. This poses a major hurdle to parametric inference, as the likelihood function induced by these data is generally unavailable. A common strategy known as "data augmentation" is to impute the missing continuous path of the data in order to calculate the likelihood, and then integrate it back out. Efficient imputation of continuous data in this context is one of the primary objectives of this research program, and will be performed by Gaussian Process Regression (GPR). This constitutes a novel application of this long-standing stochastic interpolation technique.**Most of the statistical literature on inference for continuous-time models operates under a Markov assumption. While this is appropriate when dynamical phenomena have rapid decorrelation times, for many cutting-edge experiments with high frequency measurements, this is not the case. A particularly important non-Markov stochastic model is known as a Generalized Langevin Equation (GLE). This model has received considerable attention from the scientific community with applications in physics, chemistry, molecular biology, and even quantum mechanics. This research program will, for the very first time, address parametric inference for the GLE in the non-Gaussian setting. The key is an approximation to the continuous-time likelihood by a novel numerical discretization scheme, through which the path imputation framework described above can be directly applied.**While the primary focus of the proposed research is on statistical inference, it is of critical importance to determine whether a given model -- possibly selected from competing alternatives -- in fact agrees with the experimental data. The validity of a scientific model lies, in part, is its ability to make predictions. In many nanoscopic experiments, however, the predictions of interest are not merely univariate quantities but entire functions, such as mean-squared displacement curves or frequency spectra. This research program will leverage the principles of functional data analysis to meaningfully reduce these functions to low-dimensional statistics, which can readily be used for both goodness-of-fit testing and model selection.**In a broader statistical context, the inferential and analytical challenges encountered here arise when almost any continuous-time stochastic model is discretely observed. This is the case for a wide range of non-nanoscopic phenomena occurring in areas such as geology, climatology, neurology, and finance. As such, the proposed research program is highly relevant to a multitude of problems under active investigation by researchers in Canada and abroad.
借助当前最先进的纳米测量技术,研究人员能够以前所未有的精度和可重复性观察分子和原子的动力学。这些纳米级实验为统计建模带来了巨大的挑战和机遇。一方面,随机性自然地出现在确定性的物理系统中,在这个系统中,无数的自由度是无法被观察到的。另一方面,偏离理想实验条件需要对测量误差进行详细分析。最终,科学目标是用解释性模型来描述动态现象。本研究计划将解决实现这一目标的两个重要挑战:随机物理模型的有效统计推断,以及理论模型和实验数据之间一致性的有效评估。具体来说,纳米现象的统计模型是在连续时间内给出的,而记录的数据几乎总是离散的。这对参数推理构成了一个主要障碍,因为由这些数据引起的似然函数通常不可用。一种被称为“数据增强”的常见策略是,为了计算可能性,对数据缺失的连续路径进行推算,然后将其整合回来。在这种情况下,连续数据的有效输入是本研究计划的主要目标之一,并将通过高斯过程回归(GPR)进行。这构成了这种长期存在的随机插值技术的新应用。**大多数关于连续时间模型推理的统计文献都是在马尔可夫假设下进行的。当动态现象具有快速的去相关时间时,这是合适的,但对于许多具有高频测量的尖端实验来说,情况并非如此。一个特别重要的非马尔可夫随机模型被称为广义朗之万方程(GLE)。这个模型在物理学、化学、分子生物学甚至量子力学中都得到了科学界的广泛关注。该研究项目将首次解决非高斯环境下GLE的参数推断问题。关键是用一种新的数值离散化方法逼近连续时间似然,通过这种方法可以直接应用上述路径插值框架。**虽然所提议的研究的主要焦点是统计推断,但确定给定模型(可能是从相互竞争的备选方案中选择的)是否实际上与实验数据一致是至关重要的。科学模型的有效性部分在于它的预测能力。然而,在许多纳米级实验中,令人感兴趣的预测不仅仅是单变量量,而是整个函数,如均方位移曲线或频谱。本研究计划将利用功能数据分析的原则,有意义地将这些函数简化为低维统计,这可以很容易地用于拟合优度测试和模型选择。**在更广泛的统计背景下,当几乎任何连续时间随机模型被离散观察时,这里遇到的推理和分析挑战都会出现。在地质学、气候学、神经学和金融等领域发生的大量非纳米现象都是如此。因此,拟议的研究计划与加拿大和国外研究人员正在积极研究的众多问题高度相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lysy, Martin其他文献

A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap
  • DOI:
    10.1890/14-0235.1
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Swanson, Heidi K.;Lysy, Martin;Reist, James D.
  • 通讯作者:
    Reist, James D.
Rigorous quantification of statistical significance of the COVID-19 lockdown effect on air quality: The case from ground-based measurements in Ontario, Canada.
  • DOI:
    10.1016/j.jhazmat.2021.125445
  • 发表时间:
    2021-07-05
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Al-Abadleh, Hind A.;Lysy, Martin;Neil, Lucas;Patel, Priyesh;Mohammed, Wisam;Khalaf, Yara
  • 通讯作者:
    Khalaf, Yara
Flexible dynamic vine copula models for multivariate time series data
  • DOI:
    10.1016/j.ecosta.2019.03.002
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Acar, Elif F.;Czado, Claudia;Lysy, Martin
  • 通讯作者:
    Lysy, Martin

Lysy, Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lysy, Martin', 18)}}的其他基金

Statistical Computing in Modern Scientific Analysis
现代科学分析中的统计计算
  • 批准号:
    RGPIN-2020-04364
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Computing in Modern Scientific Analysis
现代科学分析中的统计计算
  • 批准号:
    RGPIN-2020-04364
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Computing in Modern Scientific Analysis
现代科学分析中的统计计算
  • 批准号:
    RGPIN-2020-04364
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Maximum Likelihood Estimation with Weak Data: A Practical Approach
弱数据的最大似然估计:一种实用方法
  • 批准号:
    358606-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Maximum Likelihood Estimation with Weak Data: A Practical Approach
弱数据的最大似然估计:一种实用方法
  • 批准号:
    358606-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Postgraduate Scholarships - Doctoral

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Statistical Modeling and Inference for Network Data in Modern Applications
现代应用中网络数据的统计建模和推理
  • 批准号:
    2326893
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Excellence in Research: Statistical Network Modeling and Inference for Complex Data
卓越的研究:复杂数据的统计网络建模和推理
  • 批准号:
    2100729
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Establishing a Flexible and Reliable Automatic Approximate Inference Method to Accelerate the Social Execution of Statistical Modeling.
建立灵活可靠的自动近似推理方法,加速统计建模的社会化执行。
  • 批准号:
    21J11859
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Statistical modeling, inference and methodology in microbial metagenomics data analysis and computational molecular evolution
微生物宏基因组数据分析和计算分子进化的统计建模、推理和方法
  • 批准号:
    RGPIN-2017-05108
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical modeling, inference and methodology in microbial metagenomics data analysis and computational molecular evolution
微生物宏基因组数据分析和计算分子进化的统计建模、推理和方法
  • 批准号:
    RGPIN-2017-05108
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling and Inference for Network Data in Modern Applications
现代应用中网络数据的统计建模和推理
  • 批准号:
    2015190
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Developments of statistical inference, prediction, and modeling methods for network meta-analysis
网络元分析统计推断、预测和建模方法的发展
  • 批准号:
    19H04074
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A comprehensive study on methodologies of statistical modeling and inference for Hawks-type point process and applications
Hawks型点过程统计建模与推理方法及应用综合研究
  • 批准号:
    19H04073
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical modeling, inference and methodology in microbial metagenomics data analysis and computational molecular evolution
微生物宏基因组数据分析和计算分子进化的统计建模、推理和方法
  • 批准号:
    RGPIN-2017-05108
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了