Statistical Computing in Modern Scientific Analysis

现代科学分析中的统计计算

基本信息

  • 批准号:
    RGPIN-2020-04364
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Modern-day scientific analyses employ ever more accurate instruments to record ever larger amounts of experimental data. While this has great promise for scientific discovery, extracting sound conclusions for complex and interacting instrumental errors poses a formidable challenge in statistical computing. The goal of this research program is to develop reliable measurement models for various dynamical processes in the natural sciences, and to develop the computational methods to use these models for scientific inquiry. A central focus of this research program is statistical inference for differential equations (DEs). DE models naturally and faithfully capture the underlying physics of countless dynamical processes. However, statistical inference for these models is extremely computationally intensive, and susceptible to large numerical round-off errors. This research program will address these issues by pursuing the following objectives: - Objective 1: To correctly account for round-off errors by incorporating them directly into the statistical model. - Objective 2: To effectively substitute DE models by surrogates for which inference is much more straightforward. - Objective 3: To develop approximate methods of inference for DEs using machine learning methods and toolkits. The path towards realizing these objectives will propose important methodological connections between a variety of DE models and otherwise isolated computational inference strategies. Addressing DE inference via machine learning methods will produce fast, flexible and reliable computational tools to promote widespread use of DEs for scientific inquiry -- in addition to providing excellent training for students to pursue impactful data science careers in the Canadian workforce.
现代科学分析使用越来越精确的仪器来记录越来越大量的实验数据。虽然这对科学发现有很大的希望,但从复杂和相互作用的仪器误差中提取合理的结论对统计计算构成了巨大的挑战。该研究计划的目标是为自然科学中的各种动态过程开发可靠的测量模型,并开发使用这些模型进行科学探究的计算方法。这个研究项目的一个中心焦点是微分方程(DE)的统计推断。DE模型自然而忠实地捕捉无数动力学过程的基本物理。然而,这些模型的统计推断是非常计算密集型的,容易受到大的数值舍入误差。本研究计划将通过追求以下目标来解决这些问题:-目标1:通过将其直接纳入统计模型来正确解释舍入误差。- 目标2:有效地替代DE模型的替代推理更直接。- 目标3:使用机器学习方法和工具包开发DE的近似推理方法。实现这些目标的路径将提出各种DE模型之间的重要方法连接,否则孤立的计算推理策略。通过机器学习方法解决DE推理将产生快速,灵活和可靠的计算工具,以促进DE在科学探究中的广泛使用-此外还为学生提供优秀的培训,以便在加拿大劳动力中从事有影响力的数据科学职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lysy, Martin其他文献

A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap
  • DOI:
    10.1890/14-0235.1
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Swanson, Heidi K.;Lysy, Martin;Reist, James D.
  • 通讯作者:
    Reist, James D.
Rigorous quantification of statistical significance of the COVID-19 lockdown effect on air quality: The case from ground-based measurements in Ontario, Canada.
  • DOI:
    10.1016/j.jhazmat.2021.125445
  • 发表时间:
    2021-07-05
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Al-Abadleh, Hind A.;Lysy, Martin;Neil, Lucas;Patel, Priyesh;Mohammed, Wisam;Khalaf, Yara
  • 通讯作者:
    Khalaf, Yara
Flexible dynamic vine copula models for multivariate time series data
  • DOI:
    10.1016/j.ecosta.2019.03.002
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Acar, Elif F.;Czado, Claudia;Lysy, Martin
  • 通讯作者:
    Lysy, Martin

Lysy, Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lysy, Martin', 18)}}的其他基金

Statistical Computing in Modern Scientific Analysis
现代科学分析中的统计计算
  • 批准号:
    RGPIN-2020-04364
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Computing in Modern Scientific Analysis
现代科学分析中的统计计算
  • 批准号:
    RGPIN-2020-04364
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling, Inference, and Analysis of Nanoscopic Phenomena
纳米现象的统计建模、推理和分析
  • 批准号:
    RGPIN-2014-04225
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Maximum Likelihood Estimation with Weak Data: A Practical Approach
弱数据的最大似然估计:一种实用方法
  • 批准号:
    358606-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Maximum Likelihood Estimation with Weak Data: A Practical Approach
弱数据的最大似然估计:一种实用方法
  • 批准号:
    358606-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral

相似海外基金

CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321017
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Collaborative Research:CyberTraining:Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321020
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
POSE: Phase I: Toward a Task-Parallel Programming Ecosystem for Modern Scientific Computing
POSE:第一阶段:迈向现代科学计算的任务并行编程生态系统
  • 批准号:
    2349144
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Collaborative Research:CyberTraining:Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321016
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Collaborative Research:CyberTraining:Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321019
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining:Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321015
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Collaborative Research:CyberTraining:Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321018
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
HyperTran: High-Performance Transient Stability Simulation of Power Systems on Modern Parallel Computing Hardware
HyperTran:在现代并行计算硬件上对电力系统进行高性能暂态稳定性仿真
  • 批准号:
    2226826
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Modern On-Site High Performance Computing System
现代现场高性能计算系统
  • 批准号:
    10431417
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了