Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
基本信息
- 批准号:RGPIN-2019-05430
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My mathematical research is in operator algebras. Operators and operator algebras are everywhere in the natural sciences since they are a combination of linear algebra and analysis. In particular, operator algebras and functional analysis form the backbone of modern quantum theory. In this way, my research is very relevant to a wider community than pure mathematics.***My proposed research will be made up of two main projects, crossed products of non-selfadjoint operator algebras and residually finite-dimensional operator algebras. Both of these projects into the structure of operator algebras are continuations of successful research I have conducted. ***First, I propose to continue my study of crossed products of non-selfadjoint operator algebras in collaboration with Elias Katsoulis of East Carolina University. A crossed product encodes the behaviour of a dynamical system. Elias and I developed this theory for non-selfadjoint operator algebras through three publications. This area has garnered some serious interest from the operator algebras community and it has, I believe, a rich theory still to be discovered.***A major open problem in crossed products is the Hao-Ng isomorphism problem for C*-correspondences. To every C*-correspondence one associates a canonical C*-algebra called the Cuntz-Pimsner algebra. Given a C*-correspondence and a certain action of a group the Hao-Ng isomorphism problem asks whether the crossed product of the Cuntz-Pimsner algebra of the C*-correspondence is isomorphic to the Cuntz-Pimsner algebra of the crossed product C*-correspondence. ***In the next five years I propose to resolve the Hao-Ng isomorphism problem. To achieve such a significant result will require the study of hyperrigidity and a constructive approach to dilation theory. ***The second major thrust of research that I am proposing is that of the study of residually finite-dimensional (RFD) operator algebras with Raphaël Clouâtre at the University of Manitoba. We have finished an initial study of these algebras which has opened up many further questions.***An operator algebra is called RFD if there is a family of finite-dimensional representations that recover the algebra. This property is a thriving research area in C*-algebras but has not been considered very much in the non-selfadjoint context. The study of representations is of significant importance to all areas of mathematics and finite-dimensional representations are particularly applicable to natural sciences and engineering. Basic questions remain open such as whether commutative operator algebras are RFD. I aim to dive deeply into such questions.*****
我的数学研究方向是算子代数。算子和算子代数在自然科学中无处不在,因为它们是线性代数和分析的结合。特别是,算子代数和泛函分析形成了现代量子理论的支柱。这样,我的研究与比纯数学更广泛的社区非常相关。我的研究主要包括两个方面,非自伴算子代数的交叉积和剩余有限维算子代数。这两个关于算子代数结构的项目都是我所进行的成功研究的延续。* 首先,我打算与东卡罗莱纳大学的Elias Katsoulis合作,继续研究非自伴算子代数的交叉积。交叉积编码了动力系统的行为。埃利亚斯和我通过三个出版物发展了非自伴算子代数的理论。这一领域已经引起了算子代数界的极大兴趣,我相信,它还有丰富的理论有待发现。交叉积中的一个主要的公开问题是C*-对应的Hao-Ng同构问题。对于每一个C*-对应,我们都将一个标准C*-代数称为Cuntz-Pimsner代数。给定一个C*-对应和一个群的某个作用,Hao-Ng同构问题是问C*-对应的Cuntz-Pimsner代数的交叉积是否同构于交叉积C*-对应的Cuntz-Pimsner代数。* 在接下来的五年里,我建议解决Hao-Ng同构问题。要达到这样一个重要的结果,将需要研究超刚性和膨胀理论的建设性方法。* 我提出的第二个主要研究方向是与马尼托巴大学的拉斐尔·克劳特雷一起研究剩余有限维(RFD)算子代数。我们已经完成了对这些代数的初步研究,这就提出了许多进一步的问题。一个算子代数被称为RFD,如果有一个有限维表示的家庭,恢复代数。这个性质是C*-代数中一个蓬勃发展的研究领域,但在非自伴背景下并没有得到太多的考虑。表示的研究是非常重要的所有领域的数学和有限维表示是特别适用于自然科学和工程。基本问题仍然悬而未决,如交换算子代数是否RFD。我的目标是深入研究这些问题。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramsey, Christopher其他文献
Thermal pretreatment of silica composite filler materials.
- DOI:
10.1007/s10973-009-0139-8 - 发表时间:
2010-01 - 期刊:
- 影响因子:4.4
- 作者:
Wan, Quan;Ramsey, Christopher;Baran, George - 通讯作者:
Baran, George
The isomorphism problem for tensor algebras of multivariable dynamical systems
多变量动力系统张量代数的同构问题
- DOI:
10.1017/fms.2022.73 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Katsoulis, Elias G.;Ramsey, Christopher - 通讯作者:
Ramsey, Christopher
Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase
- DOI:
10.1021/jm060687j - 发表时间:
2007-01-25 - 期刊:
- 影响因子:7.3
- 作者:
Heikkila, Timo;Ramsey, Christopher;McConkey, Glenn A. - 通讯作者:
McConkey, Glenn A.
Ramsey, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramsey, Christopher', 18)}}的其他基金
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
DGECR-2019-00368 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Launch Supplement
Characterizations, automorphisms and dilation theory of operator algebras
算子代数的表征、自同构和膨胀理论
- 批准号:
437943-2013 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Postdoctoral Fellowships
Characterizations, automorphisms and dilation theory of operator algebras
算子代数的表征、自同构和膨胀理论
- 批准号:
437943-2013 - 财政年份:2013
- 资助金额:
$ 1.17万 - 项目类别:
Postdoctoral Fellowships
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structure and Function of Non-Conventional Caveolins
非常规小窝蛋白的结构和功能
- 批准号:
10638902 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Correlating structure and function in KATP channel isoforms
KATP 通道亚型的结构和功能相关
- 批准号:
10629412 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Non uniformity in the PDL: structure and function of the dense collar
PDL 的不均匀性:致密环的结构和功能
- 批准号:
10491173 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Structure and functions of the actin cytoskeleton
肌动蛋白细胞骨架的结构和功能
- 批准号:
10667325 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Non uniformity in the PDL: structure and function of the dense collar
PDL 的不均匀性:致密环的结构和功能
- 批准号:
10296840 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Structure and functions of the actin cytoskeleton
肌动蛋白细胞骨架的结构和功能
- 批准号:
10470372 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Structure and functions of the actin cytoskeleton
肌动蛋白细胞骨架的结构和功能
- 批准号:
10165228 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Non uniformity in the PDL: structure and function of the dense collar
PDL 的不均匀性:致密环的结构和功能
- 批准号:
10686415 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别: