An Entropic Approach to Partial Differential Equations and Optimal Transport
偏微分方程和最优输运的熵方法
基本信息
- 批准号:542890-2019
- 负责人:
- 金额:$ 1.27万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - Master's
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
无摘要- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rioux, Gabriel其他文献
Rioux, Gabriel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 1.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
- 批准号:
RGPIN-2017-05567 - 财政年份:2022
- 资助金额:
$ 1.27万 - 项目类别:
Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2022
- 资助金额:
$ 1.27万 - 项目类别:
Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2021
- 资助金额:
$ 1.27万 - 项目类别:
Discovery Grants Program - Individual
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
- 批准号:
RGPIN-2017-05567 - 财政年份:2021
- 资助金额:
$ 1.27万 - 项目类别:
Discovery Grants Program - Individual
Development of novel T cell rejuvenation approach utilizing partial reprogramming
利用部分重编程开发新型 T 细胞复兴方法
- 批准号:
20K07651 - 财政年份:2020
- 资助金额:
$ 1.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
- 批准号:
RGPIN-2017-05567 - 财政年份:2020
- 资助金额:
$ 1.27万 - 项目类别:
Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2020
- 资助金额:
$ 1.27万 - 项目类别:
Discovery Grants Program - Individual
A novel approach for clinical application of composite resin-veneered resin-bonded zirconia fixed partial denture
复合树脂贴面树脂粘结氧化锆固定局部义齿临床应用新途径
- 批准号:
19K10217 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Discovery Grants Program - Individual