An Entropic Approach to Partial Differential Equations and Optimal Transport

偏微分方程和最优输运的熵方法

基本信息

  • 批准号:
    542890-2019
  • 负责人:
  • 金额:
    $ 1.27万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rioux, Gabriel其他文献

Rioux, Gabriel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
  • 批准号:
    22H01130
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
  • 批准号:
    RGPIN-2017-05567
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2021
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
  • 批准号:
    RGPIN-2017-05567
  • 财政年份:
    2021
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Development of novel T cell rejuvenation approach utilizing partial reprogramming
利用部分重编程开发新型 T 细胞复兴方法
  • 批准号:
    20K07651
  • 财政年份:
    2020
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
  • 批准号:
    RGPIN-2017-05567
  • 财政年份:
    2020
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2020
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
A novel approach for clinical application of composite resin-veneered resin-bonded zirconia fixed partial denture
复合树脂贴面树脂粘结氧化锆固定局部义齿临床应用新途径
  • 批准号:
    19K10217
  • 财政年份:
    2019
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2019
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了