Desingularization and applications. Analysis on and Geometry of singular spaces

去奇异化和应用。

基本信息

  • 批准号:
    RGPIN-2018-04445
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Singularities express irregularities of form in many branches of mathematics and its applications.*The important features of forms are often concentrated at singularities. Desingularization and*its applications are central to my work.*******In the past years my research led me to discovery of fundamental links between algebraic, analytic*and geometric aspects of singularities: solutions of the long-standing problems posed by Whitney,*Thom and Hironaka; to an extension to a singular setting of the classical Bernstein-Markov and*Gagliardo-Nirenberg type inequalities of analysis; to sharp new bounds on the heat kernel via*desingularizing weights, to tangential Markov inequalities on singular varieties, to a Chow type*theorem for ideals and by means of the latter and desingularization to a simple construction of a*Poincare type metric off singularities.*******Within the last 6 years I discovered a Bertini-type theorem crucial for my characterization of*Universal Stratifications satisfying Thom and Whitney-a conditions, established complexity bounds*for classical desingularization (turned out to be very high) and low complexity bounds (polynomial)*for Normalized Nash Desingularization in essential dimension 2 , proved Geometric Auslander*criteria for openness and for flatness of algebraic morphisms and also advanced my 15 years old*`geometric minimal models' program to a classification of `minimal singularities' in 4 and 3 variables*(i.e. a minimal list of singularities besides normal crossings with existence of desingularizations*isomorphic off these singularities, e.g. just the Whitney Umbrella for surfaces). Recently I also*established desingularization of the cotangent bundle of singular threefolds (and, in any dimension,*its equivalence to a desingularization of the induced metric) and extended my arcanalyticity and****Malgrange type division by analytic functions results to the quasi-analytic classes. I plan to work on natural extensions of these results.******The main objective of the proposed research is to find a closer link between desingularization and the*information that may be encoded in the geometry of and analysis on singular spaces. My longer term objective would be a reconstruction of the entire process of resolution of singularities in terms of geometry and/or analysis. I also would like to show that complex analytic stable leaves of a `rigid' Morse-Smale complexes of projective algebraic manifolds extend to algebraic subvarieties of the same dimension, and that function on a closed set which is separately a restriction of a semi-algebraic function and of a k-times*differentiable function is a restriction of a k-times differentiable semi-algebraic function, etc. ******Finally, my attempts to clarify diverse problems in algebra, geometry and analysis proved to be a*fertile ground for raising excellent mathematicians from graduate students. My research plans*aim to repeat this experience.***
奇异性在数学及其应用的许多分支中表达形式的不规则性。*形式的重要特征通常集中在奇点上。 *****在过去的几年中*******,我的研究使我发现了代数,分析*与奇异之处的几何方面:惠特尼(Whitney),*汤姆(Thom)和hironaka所构成的长期问题的解决方案;扩展到经典的伯恩斯坦 - 马尔科夫(Bernstein-Markov)和*gagliardo-nirenberg类型的分析不平等现象;通过*降低的重量在热内核上的新界限,以奇异品种的切向马尔可夫的不平等,对理想和后者和后者的理论*理论的简单构想,从而简单地构造了一个*poincare类型的度量,我在过去的6年中发现了我的特征。 Thom和Whitney-A条件,为经典的垂缘化(原来是很高)和低复杂性界限(多项式)*的确定复杂性界限*,用于基本维度2中的nash降低的标准化,几何的几何auslander*标准是开放性和对代数形式的纯度和对我的15年的平稳性的标准。 4和3变量中的“最小奇异性”*(即,除了正常的穿越外,奇异性列表的最小清单与存在降低的奇异性*同构相反,例如只是惠特尼伞的表面)。最近,我还*建立了奇异三倍的cotangent束(并且在任何维度上*它等于诱导的度量标准),并通过分析函数结果扩展了我的Arcanalytictions和**** Malgrange类型分裂的结果。我计划研究这些结果的自然扩展。******拟议的研究的主要目的是在降低和*在奇异空间的几何形状和分析中可能编码的*信息之间找到更紧密的联系。我的长期目标将是对几何和/或分析的整个奇异性解决过程的重建。 I also would like to show that complex analytic stable leaves of a `rigid' Morse-Smale complexes of projective algebraic manifolds extend to algebraic subvarieties of the same dimension, and that function on a closed set which is separately a restriction of a semi-algebraic function and of a k-times*differentiable function is a restriction of a k-times differentiable semi-algebraic function, etc. ******Finally, my事实证明,试图阐明代数,几何学和分析的各种问题是*肥沃的基础,可以从研究生中培养出色的数学家。我的研究计划*旨在重复这一经验。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milman, Pierre其他文献

Milman, Pierre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milman, Pierre', 18)}}的其他基金

Desingularization and applications. Analysis on and Geometry of singular spaces
去奇异化和应用。
  • 批准号:
    RGPIN-2018-04445
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Desingularization and applications. Analysis on and Geometry of singular spaces
去奇异化和应用。
  • 批准号:
    RGPIN-2018-04445
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Desingularization and applications. Analysis on and Geometry of singular spaces
去奇异化和应用。
  • 批准号:
    RGPIN-2018-04445
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Desingularization and applications. Analysis on and Geometry of singular spaces
去奇异化和应用。
  • 批准号:
    RGPIN-2018-04445
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on and geometry of singular spaces towards a geometric desingularization
奇异空间的分析和几何走向几何去奇异化
  • 批准号:
    8949-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于多组学分析的胸主动脉瘤/夹层发生发展的关键机制和干预策略研究(联合申请A)
  • 批准号:
    82241203
  • 批准年份:
    2022
  • 资助金额:
    200.00 万元
  • 项目类别:
    专项项目
战略研究类:地理科学2021版申请代码调整对资助布局影响及资助政策分析
  • 批准号:
    42242001
  • 批准年份:
    2022
  • 资助金额:
    34.00 万元
  • 项目类别:
    专项项目
战略研究类:大气学科国家自然科学基金资助布局及其动态变化分析—以2020版申请代码为视角
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    专项基金项目
战略研究类:大气学科国家自然科学基金资助布局及其动态变化分析—以2020版申请代码为视角
  • 批准号:
    42142009
  • 批准年份:
    2021
  • 资助金额:
    33.00 万元
  • 项目类别:
    专项项目
基于计算机文本分析的IPO申请材料的披露质量研究
  • 批准号:
    71602131
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Collaborative R&D
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
REU Site: Graph Learning and Network Analysis: from Foundations to Applications (GraLNA)
REU 网站:图学习和网络分析:从基础到应用 (GraLNA)
  • 批准号:
    2349369
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Conference: Analysis on fractals and networks with applications, at Luminy
会议:分形和网络分析及其应用,在 Luminy 举行
  • 批准号:
    2334026
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
ROBIN: Rotation-based Buckling Instability Analysis, and Applications to Creation of Novel Soft Mechanisms
ROBIN:基于旋转的屈曲不稳定性分析及其在新型软机构创建中的应用
  • 批准号:
    24K00847
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了