CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
基本信息
- 批准号:2340465
- 负责人:
- 金额:$ 54.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main research goal of this project is to apply analytic tools coming from physics, such as gauge theory and operator algebras, to topology, which is the study of geometric shapes. This research is divided into two themes: low dimensional topology and operator K-theory. In both fields, the aforementioned analytic tools are used to build invariants to study the geometric structure of manifolds, which are spaces modelled on Euclidean spaces, like the 3-dimensional space we live in. In both low dimensional topology and operator K-theory, the PI will use analytic tools to study questions about these spaces, such as how they are curved or how objects can be embedded inside them. These questions have a wide range of applications in biology and physics. The educational and outreach goals of this project involve math and general STEM enrichment programs at the middle and high school levels, with a focus on programs aimed at students from underserved communities and underrepresented groups, as well as mentorship in research at the high school, undergraduate and graduate levels.In low dimensional topology, this project focuses on furthering our understanding of instanton and monopole Floer homologies and their relation to Khovanov homology, and using this to study existence questions of families of metrics with positive scalar curvature on manifolds, as well as questions about knot concordance. Separately this project also involves computationally studying knot concordance, both by a computer search for concordances and by computationally studying certain local equivalence and almost local equivalence groups that receive homomorphisms from the knot concordance groups. In operator algebras, this project focuses on studying their K-theory and its applications to invariants in geometry and topology. The K-theory groups of operator algebras are the targets of index maps of elliptic operators and have important applications to the geometry and topology of manifolds. This project involves studying the K-theory of certain C*-algebras and using them to study infinite dimensional spaces; studying the noncommutative geometry of groups that act on these infinite dimensional spaces and, in particular, the strong Novikov conjecture for these groups; and studying the coarse Baum-Connes conjecture for high dimensional expanders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要研究目标是将来自物理学的分析工具(例如仪表理论和操作员代数)应用于拓扑,这是对几何形状的研究。这项研究分为两个主题:低维拓扑和操作员K理论。在这两个领域中,上述分析工具都用于构建不变性来研究歧管的几何结构,这些空间是在欧几里得空间上建模的空间,例如我们居住的三维空间。在低维拓扑和操作员K-theor中,PI都将使用这些空间来研究这些空间的问题,例如它们在这些空间中的质疑,例如它们的范围或对象又可以对象进行对象。这些问题在生物学和物理学中具有广泛的应用。 The educational and outreach goals of this project involve math and general STEM enrichment programs at the middle and high school levels, with a focus on programs aimed at students from underserved communities and underrepresented groups, as well as mentorship in research at the high school, undergraduate and graduate levels.In low dimensional topology, this project focuses on furthering our understanding of instanton and monopole Floer homologies and their relation to Khovanov homology,并利用这一点来研究具有积极标态曲率的指标家庭的存在问题,以及有关结一致性的问题。该项目分别涉及计算研究结的一致性,无论是通过计算机搜索一致性,以及通过计算研究某些局部等效性和几乎局部等效组,这些群体从结的一致性组中接受同构。在操作员代数中,该项目致力于研究其K理论及其在几何和拓扑中不变的应用。操作员代数的K理论组是椭圆运算符的索引图的目标,并且在歧管的几何形状和拓扑中具有重要的应用。该项目涉及研究某些C* - 代数的K理论,并使用它们来研究无限的维空间。研究对这些无限的维空间,尤其是这些群体强烈的诺维科夫猜想的群体的非交通性几何形状;并研究了对高维扩展器的粗糙鲍姆 - 康涅狄格州的猜想。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sherry Gong其他文献
Nonorientable link cobordisms and torsion order in Floer homologies
Floer 同调中的不可定向连杆配边和扭转顺序
- DOI:
10.2140/agt.2023.23.2627 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sherry Gong;Marco Marengon - 通讯作者:
Marco Marengon
Property RD and the Classification of Traces on Reduced Group $C^*$-algebras of Hyperbolic Groups
双曲群约简群$C^*$-代数的性质RD和迹分类
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sherry Gong - 通讯作者:
Sherry Gong
Khovanov homology and binary dihedral representations for marked links
- DOI:
10.1016/j.geomphys.2018.10.014 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:
- 作者:
Sherry Gong - 通讯作者:
Sherry Gong
On a problem regarding coefficients of cyclotomic polynomials
- DOI:
10.1016/j.jnt.2009.04.008 - 发表时间:
2009-12 - 期刊:
- 影响因子:0.7
- 作者:
Sherry Gong - 通讯作者:
Sherry Gong
Finite Part of Operator $K$-Theory for Groups with Rapid Decay
- DOI:
10.4171/jncg/205 - 发表时间:
2013-09 - 期刊:
- 影响因子:0.9
- 作者:
Sherry Gong - 通讯作者:
Sherry Gong
Sherry Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sherry Gong', 18)}}的其他基金
Regularity Properties and K-Theory of Crossed Product Operator Algebras
叉积算子代数的正则性质与K理论
- 批准号:
2055736 - 财政年份:2021
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
相似国自然基金
基于晶体内精密超声行波构建理论的大量程纳米位移测量方法
- 批准号:52375526
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
带有协变量测量误差的生存模型的阈值检测理论及应用
- 批准号:12301327
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于静态红外快照光谱成像的航空发动机燃烧流场多参数测量系统理论及关键技术研究
- 批准号:62305339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
红外偏振全天时天文大地垂线偏差测量理论方法研究
- 批准号:42374011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
适用于新能源高渗透率区域的非接触式同步测量理论与方法
- 批准号:52377098
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Gauge theoretic moduli spaces
规范理论模空间
- 批准号:
RGPIN-2019-04375 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Discovery Grants Program - Individual
Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
- 批准号:
22K03293 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies in gauge theoretic deformation invariants and their generating functions
规范理论变形不变量及其生成函数的研究
- 批准号:
21K03246 - 财政年份:2021
- 资助金额:
$ 54.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gauge theoretic moduli spaces
规范理论模空间
- 批准号:
RGPIN-2019-04375 - 财政年份:2021
- 资助金额:
$ 54.93万 - 项目类别:
Discovery Grants Program - Individual
Gauge theoretic moduli spaces
规范理论模空间
- 批准号:
RGPIN-2019-04375 - 财政年份:2020
- 资助金额:
$ 54.93万 - 项目类别:
Discovery Grants Program - Individual