How do forbidden induced subgraphs impact global phenomena in graphs?

禁止诱导子图如何影响图中的全局现象?

基本信息

  • 批准号:
    RGPIN-2017-06673
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

My research program is in theoretical and algorithmic graph theory. I seek to better understand structural properties of graphs through the lens of parameters motivated by real world problems.******A “graph” (or “network”) is a set of objects (“vertices”) and a set of pairs of vertices (“edges”). In most applications, graphs are used to represent a system of connections or relationships. The Facebook graph has users as its vertices and two users are connected by an edge if they are friends. A highway system can be modelled by a graph whose vertices are cities and towns, and the edges are roads and highways. A telecommunications network can be modelled by a graph where vertices are towers and two are connected by an edge if they can communicate with one another. Many problems we would like to solve in a graph theoretic setting are computationally very difficult. For example, suppose a delivery truck wishes to visit every city in a region exactly once in a single trip, finishing where it started. The time it takes to determine if such a route even exists grows extremely rapidly as the number of cities to consider increases. Under what conditions can we efficiently solve such a problem? Even better, what conditions necessarily imply a positive solution? ******My research program focuses on finding subgraphs which, when forbidden from occurring in a graph as an induced subgraph, guarantee a positive answer to a question which is otherwise difficult to solve. In the long term, I aim to deeply understand the effect of forbidding induced subgraphs on the following three aspects of a graph (examples of real world motivations for each aspect given in parentheses):***(1) the existence of long cycles (efficient or optimal routing in networks),***(2) covering the graph with particular subgraphs, especially complete graphs (optimizing computer performance, food webs, analysis of real world complex networks), and***(3) the chromatic number of the graph, especially as it relates to other graph parameters (scheduling problems, channel assignment in communication networks).******Over the next five years, I intend to make progress in all three themes. I am interested in generalizing known closure concepts in H-free graphs, a project that is large enough in scope to warrant support from both PhD students and postdoctoral fellows. These concepts are vital tools for guaranteeing spanning cycles in H-free graphs. Recent progress on edge clique coverings suggests new avenues to be explored regarding this parameter, including solving one remaining case of an open problem on covering the edges of claw-free graphs with cliques. Finally, I will pursue an open conjecture related to chi-boundedness which, surprisingly, relates induced subgraphs, paths and cycles, and graph colouring. Preliminary evidence suggests improvements can be made on the best known results related to the conjecture, and opportunities exist for contributions from HQPs of all levels.
我的研究方向是理论和算法图论。我试图通过现实世界问题激发的参数镜头更好地理解图的结构属性。******“图”(或“网络”)是一组对象(“顶点”)和一组顶点对(“边”)。在大多数应用程序中,图用于表示连接或关系系统。Facebook图形以用户为顶点,如果两个用户是朋友,则通过一条边连接。高速公路系统可以用一个图形来建模,这个图形的顶点是城镇,边缘是道路和高速公路。一个电信网络可以用一个图来建模,其中顶点是塔,如果它们可以相互通信,两个塔通过一条边连接起来。我们想在图论环境中解决的许多问题在计算上是非常困难的。例如,假设一辆送货卡车希望在一次旅行中访问一个地区的每个城市,并在开始的地方结束。随着需要考虑的城市数量的增加,确定这条路线是否存在所需的时间也在迅速增加。在什么条件下我们可以有效地解决这样的问题?更好的是,什么条件必然意味着一个正解?******我的研究项目集中在寻找子图,当禁止在图中作为诱导子图出现时,保证一个问题的正答案,否则难以解决。从长远来看,我的目标是深入理解禁止诱导子图对图的以下三个方面的影响(括号中给出了每个方面的现实世界动机的例子):***(1)长周期的存在(网络中有效或最优路由),***(2)用特定子图覆盖图,特别是完全图(优化计算机性能,食物网,分析现实世界的复杂网络),以及***(3)图的色数。特别是当它与其他图形参数(调度问题,通信网络中的信道分配)相关时。******今后五年,我打算在这三个主题上都取得进展。我对推广无h图中已知的闭包概念很感兴趣,这是一个范围足够大的项目,可以得到博士生和博士后的支持。这些概念是保证无h图中生成循环的重要工具。关于边缘团覆盖的最新进展提出了关于该参数的新探索途径,包括解决关于用团覆盖无爪图边缘的开放问题的一个剩余情况。最后,我将追求一个与chi-bounded有关的开放猜想,令人惊讶的是,它与诱导子图、路径和循环以及图着色有关。初步证据表明,可以对与该猜想有关的最著名的结果进行改进,并且存在各级HQPs贡献的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seamone, Benjamin其他文献

Seamone, Benjamin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seamone, Benjamin', 18)}}的其他基金

How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
  • 批准号:
    RGPIN-2017-06673
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
  • 批准号:
    RGPIN-2017-06673
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
  • 批准号:
    RGPIN-2017-06673
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
  • 批准号:
    RGPIN-2017-06673
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
  • 批准号:
    RGPIN-2017-06673
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
A generalized graph searching problem -- cops and robbers subject to movement constraints
广义图搜索问题——受运动限制的警察和强盗
  • 批准号:
    421798-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postdoctoral Fellowships
A generalized graph searching problem -- cops and robbers subject to movement constraints
广义图搜索问题——受运动限制的警察和强盗
  • 批准号:
    421798-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postdoctoral Fellowships
A generalized graph searching problem -- cops and robbers subject to movement constraints
广义图搜索问题——受运动限制的警察和强盗
  • 批准号:
    421798-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postdoctoral Fellowships
proper vertex labellings of graphs generated by edge weighting
由边加权生成的图的正确顶点标签
  • 批准号:
    392453-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
proper vertex labellings of graphs generated by edge weighting
由边加权生成的图的正确顶点标签
  • 批准号:
    392453-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
  • 批准号:
    2341354
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
  • 批准号:
    MR/X034100/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
  • 批准号:
    MR/Y022947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
  • 批准号:
    2244690
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
  • 批准号:
    DP240100566
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Projects
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
  • 批准号:
    MR/Y000021/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
  • 批准号:
    2333286
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了