Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
基本信息
- 批准号:RGPIN-2019-03954
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One can briefly describe discrete geometry as the study of discrete arrangements of geometric objects in Euclidean as well as in non-Euclidean spaces. Discrete geometry has very strong connections to a number of research areas in pure mathematics such as convexity, combinatorics, rigidity, geometric analysis, computational geometry, and geometric groups. Also, it is connected to some research areas in communication and information technologies and crystallography. The proposal of Dr. Karoly Bezdek (U of C) belongs to the above broad area of discrete geometry and it aims at achieving the following two major goals. On the one hand, the nine proposed research problems intend to advance the interplay between geometry, analysis, and combinatorics via joint collaborations with established and junior researchers as well as undergraduate and graduate students. On the other hand, the proposal intends to form the basis of the mentoring and training of undergraduate and graduate students as well as postdoctoral fellows. In somewhat more details, the research component of Dr. Bezdek's proposal continues the research work of his previous NSERC discovery grant on topics such as ball-polyhedra, contact graphs, soft packings, totally separable packings, covering convex bodies by cylinders, and non-separable arrangements of convex bodies via working on a number of new research problems proposed around them. On the other hand, he plans to work on fundamentally new research projects as well such as crystallization via soft ball packings, Mahler-type problems for r-ball bodies, packing convex bodies by cylinders, and volumetric geometry of molecules. As some of these problems have been obtained from applied problems of crystallography and computational biology there is hope that their solutions will progress those applications and create a new mathematical theory for them. In addition, the proposal targets the two covering conjectures of Bang (1951), the revised Goodman-Goodman conjecture (1945), the Kneser-Poulsen conjecture (1955), and the Gromov conjecture (1987), which are longstanding fundamental problems of discrete geometry. The proposed methods are combinations of methods from discrete, convex, and differential geometry, geometric analysis, and probability. The training component of Dr. Bezdek's proposal intends to bring in a number of new undergraduate and graduate as well as postdoctoral students for geometry research by expanding the boundaries of collaborative research work and by closing the gap between research and academic teaching. Due to recent breakthroughs in discrete geometry and due to recent increase in student enrolment on all levels at U of C the timing seems to be ideal for achieving the above goals. ********
人们可以简要地描述离散几何作为研究离散安排的几何对象在欧几里德以及在非欧几里德空间。离散几何与纯数学的许多研究领域有着非常紧密的联系,如凸性、组合学、刚性、几何分析、计算几何和几何群。此外,它还与通信和信息技术以及结晶学的一些研究领域有关。Karoly Bezdek博士(加州大学)的建议属于上述离散几何的广泛领域,旨在实现以下两个主要目标。一方面,提出的九个研究问题旨在通过与现有和初级研究人员以及本科生和研究生的联合合作,推进几何,分析和组合学之间的相互作用。另一方面,该提案打算为指导和培训本科生和研究生以及博士后研究员奠定基础。Bezdek博士的提案的研究部分继续了他以前的NSERC发现资助的研究工作,主题包括球多面体,接触图,软包装,完全可分离的包装,圆柱体覆盖凸体,以及凸体的不可分离安排,通过研究围绕它们提出的一些新的研究问题。另一方面,他计划从事全新的研究项目,如通过软球填充结晶,r球的马勒型问题,圆柱体填充凸体和分子的体积几何。由于这些问题中的一些已经从晶体学和计算生物学的应用问题中获得,因此希望它们的解决方案将促进这些应用并为它们创建新的数学理论。此外,该提案还针对Bang(1951)的两个覆盖猜想,修正的Goodman-Goodman猜想(1945),Kneser-Poulsen猜想(1955)和Gromov猜想(1987),这是离散几何的长期基本问题。所提出的方法是离散,凸,微分几何,几何分析和概率的方法的组合。Bezdek博士建议的培训部分旨在通过扩大合作研究工作的范围和缩小研究与学术教学之间的差距,为几何研究引进一些新的本科生和研究生以及博士后学生。由于最近在离散几何的突破,并由于最近在C的U的所有级别的学生入学人数增加的时间似乎是实现上述目标的理想。********
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bezdek, Karoly其他文献
On the covering index of convex bodies
- DOI:
10.1007/s00010-016-0409-z - 发表时间:
2016-10-01 - 期刊:
- 影响因子:0.8
- 作者:
Bezdek, Karoly;Khan, Muhammad A. - 通讯作者:
Khan, Muhammad A.
Bezdek, Karoly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bezdek, Karoly', 18)}}的其他基金
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Computational and Discrete Geometry
计算和离散几何
- 批准号:
CRC-2016-00027 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Computational And Discrete Geometry
计算和离散几何
- 批准号:
CRC-2016-00027 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Computational and Discrete Geometry
计算和离散几何
- 批准号:
CRC-2016-00027 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Computational and Discrete Geometry
计算和离散几何
- 批准号:
CRC-2016-00027 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Computational and Discrete Geometry
计算和离散几何
- 批准号:
CRC-2016-00027 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Topics in Discrete Geometry
离散几何主题
- 批准号:
RGPIN-2014-06423 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Computational and Discrete Geometry
计算和离散几何
- 批准号:
CRC-2016-00027 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
相似海外基金
High-dimensional random matrices and convex bodies; applications
高维随机矩阵和凸体;
- 批准号:
RGPIN-2018-04722 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic growth of symbolic powers, mixed multiplicities, and convex bodies
符号幂、混合多重性和凸体的渐近增长
- 批准号:
2303605 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
High-dimensional random matrices and convex bodies; applications
高维随机矩阵和凸体;
- 批准号:
RGPIN-2018-04722 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Convex Bodies, Fans and Algebraic Geometry
凸体、扇形和代数几何
- 批准号:
RGPIN-2017-05251 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Shorter billiards in convex bodies of constant width
宽度恒定的凸体中较短的台球
- 批准号:
564110-2021 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
University Undergraduate Student Research Awards
Geometric inequalities of dual volumes of convex bodies and properties of additions of convex bodies derived from the inequalities
凸体对偶体积的几何不等式及由不等式导出的凸体相加性质
- 批准号:
20K14320 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-dimensional random matrices and convex bodies; applications
高维随机矩阵和凸体;
- 批准号:
RGPIN-2018-04722 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual