Semantic Segmentation in Geospatial Computer Vision

地理空间计算机视觉中的语义分割

基本信息

  • 批准号:
    RGPIN-2021-03479
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Recently there have been tremendous advances in computer vision due to the advent of deep learning. Human-like performance has already been achieved for cognitive tasks involving visual and spatial processing. However, this high performance is strongly dependent on the number of training examples in the dataset. To address this, many online competitions are offering large benchmark datasets for training. The creation of training datasets of images or video is a costly and labour-intensive process. It requires a significant number of people to label the data and ensure its correctness and completeness manually. This is exacerbated by the fact that a dataset can typically only be used for a single classification task. This is especially the case in the geospatial domain working with remote sensor data where most datasets are for building/non-building classification. Despite the difficulties involved in the creation, researchers rely on large datasets for training classifiers to assist in solving more difficult problems such as reconstruction. Reconstructing large-scale urban areas is an inherently complex problem that involves several vision tasks. The first step is semantic segmentation(*), where the objective is to label each pixel into an urban feature type, e.g., building, road, tree, vegetation, cars, clutter etc. Next, the pixels are clustered based on their labels into contiguous groups corresponding to instances of the urban features they represent. Finally, the reconstruction is performed on each cluster, where a customized algorithm is applied according to the urban feature type corresponding to the cluster. Hence, as it is evident, to achieve a complete urban-area reconstruction, one must first address the problems relating to semantic segmentation(*). This research program builds upon our most recent research outcomes in creating large-scale realistic virtual environments and focuses on addressing some of the significant challenges identified so far. Specifically, this DG will investigate the following two research objectives: 1.Few-shot semantic segmentation. The objective is to investigate network architectures and training paradigms which enable network training using only a minimal set of training examples. 2.Interpretability. The objective is to investigate methods for analyzing and interpreting what the network is learning internally with the goal of re-purposing the abundant pre-trained semantic segmentation networks on auxiliary tasks relating to their primary task, without further training or fine-tuning. This research program is expected to make substantial contributions to the solution of complex problems of high practical relevance to the field of computer vision. (*)Semantic segmentation: each *pixel* has its class label; Classification: the *image* has a single class label. Acronyms used to describe the progress of PhD students/candidates: CE: Comprehensive Exam RP: Research Proposal DS: Doctoral Seminar
最近,由于深度学习的出现,计算机视觉取得了巨大的进步。在涉及视觉和空间处理的认知任务中,类似人类的表现已经实现。然而,这种高性能强烈依赖于数据集中训练样本的数量。为了解决这个问题,许多在线比赛都提供了大型基准数据集用于训练。创建图像或视频的训练数据集是一个昂贵且劳动密集型的过程。它需要大量的人员手动标记数据,并确保其正确性和完整性。一个数据集通常只能用于单个分类任务,这一事实加剧了这种情况。在使用遥感数据的地理空间领域尤其如此,其中大多数数据集用于建筑/非建筑分类。尽管在创建过程中存在困难,但研究人员依靠大型数据集来训练分类器,以帮助解决重建等更困难的问题。大规模城市区域的重建本质上是一个复杂的问题,涉及多个视觉任务。第一步是语义分割(*),其目标是将每个像素标记为城市特征类型,例如建筑物,道路,树木,植被,汽车,杂波等。接下来,根据像素的标签将其聚类成与其所代表的城市特征实例相对应的连续组。最后,对每个聚类进行重构,并根据聚类对应的城市特征类型应用自定义算法。因此,很明显,要实现完整的城市区域重建,必须首先解决与语义分割(*)相关的问题。该研究项目建立在我们最近在创建大规模逼真虚拟环境方面的研究成果之上,并专注于解决迄今为止确定的一些重大挑战。具体来说,这个DG将调查以下两个研究目标:1。少量的语义分割。目标是研究网络架构和训练范式,使网络训练只使用最小的训练示例集。2.可解释性。目的是研究分析和解释网络内部学习的方法,目的是在不需要进一步训练或微调的情况下,将大量预训练的语义分割网络重新用于与其主要任务相关的辅助任务。本研究计划可望为解决与电脑视觉领域高度实际相关的复杂问题作出重大贡献。(*)语义分割:每个*像素*都有自己的类标签;分类:*图像*有一个单一的类标签。用于描述博士生/候选人进展的缩写词:CE:综合考试,RP:研究提案,DS:博士研讨会

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Poullis, Charalambos其他文献

Poullis, Charalambos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Poullis, Charalambos', 18)}}的其他基金

Semantic Segmentation in Geospatial Computer Vision
地理空间计算机视觉中的语义分割
  • 批准号:
    RGPIN-2021-03479
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
ACESO: Computer Vision Algorithms for Computer-Assisted Surgical Systems
ACESO:计算机辅助手术系统的计算机视觉算法
  • 批准号:
    567101-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
DEADALUS: Massive-scale urban reconstuction, classification, and rendering from remote sensor imagery
DEADALUS:大规模城市重建、分类和遥感图像渲染
  • 批准号:
    515566-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
SBIR Phase II: High-Resolution Image Segmentation for Natural Resource Management
SBIR 第二阶段:用于自然资源管理的高分辨率图像分割
  • 批准号:
    2233680
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Cooperative Agreement
Automatic Segmentation in Cervical High-Dose Rate Brachytherapy
宫颈高剂量率近距离放射治疗中的自动分割
  • 批准号:
    495278
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Multi-Resolution Curriculum Learning Guided Convolutional Neural Networks for Automatic Segmentation of iPS Cell Colonies
多分辨率课程学习引导卷积神经网络自动分割 iPS 细胞集落
  • 批准号:
    23K11170
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Individual differences in temporal predictions in speech: word segmentation and conversational turn-taking
语音时间预测的个体差异:分词和会话轮流
  • 批准号:
    2863885
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
伴侶動物のCT画像における人工知能を用いたsegmentation手法の開発
伴侣动物CT图像人工智能分割方法的开发
  • 批准号:
    23K14074
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidating the Role of ON and OFF Visual Pathways in Object Segmentation for Escape Behavior
阐明 ON 和 OFF 视觉通路在逃逸行为对象分割中的作用
  • 批准号:
    2212750
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
  • 批准号:
    10734956
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
  • 批准号:
    2308174
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了