Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
基本信息
- 批准号:RGPIN-2016-06457
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of my research program is to advance the field of geometric parameterization. My research area lies at the intersection of applied mathematics, numerical analysis, fluid mechanics and meteorology.***Numerical models are the prime source of reliable weather and climate predictions. With increase in computational power, models become more accurate and are capable of resolving a wider range of spatial and temporal scales than ever before. Despite this, even the most advanced numerical Earth models cannot resolve all processes that are important for precise weather and climate predictions. Since these unresolved processes cannot be omitted, they have to be incorporated into the model in an approximate manner. This is referred to as parameterization. Parameterization is important to close a numerical model for the atmosphere-ocean system and thus one of the main research directions in modern meteorology and oceanography.***I propose a novel framework for developing physical parameterization schemes. The key paradigm is to use the geometric properties of the original governing equations of hydro-thermodynamics to formulate parameterization schemes that preserve these properties in the approximated equations. This will then form the basis for numerical models. These properties will include both symmetries and conservation laws, which are among the most important features of any physical model. The construction of geometry-preserving parameterization schemes will mainly rely on methods from the group analysis of differential equations.***While the main emphasis of this research program will be the development of mathematical techniques that can be used for finding geometry-preserving parameterization schemes, we will also illustrate these techniques by constructing several closure models for important physical processes, including turbulence, eddies in the ocean, and atmospheric convection.***This research program will provide the necessary tools for constructing physically and mathematically consistent parameterization schemes for a variety of processes that traditionally have to be parameterized in numerical models. This will provide a basis for the improvement of future weather and climate models. As symmetries and conservation laws are of central relevance in physics, engineering and the mathematical sciences, progress anticipated will advance these fields as well. This research program will also train several undergraduate and graduate students at the intersection of applied and computational mathematics, thus providing them with the opportunity to learn a wide variety of mathematical and technical skills equally important to excel in both academia and industry. **
我的研究计划的总体目标是推进几何参数化领域的发展。我的研究领域是应用数学、数值分析、流体力学和气象学的交叉点。***数值模型是可靠的天气和气候预测的主要来源。随着计算能力的增强,模型变得更加准确,并且能够解析比以往更广泛的空间和时间尺度。尽管如此,即使是最先进的数值地球模型也无法解决对精确天气和气候预测重要的所有过程。由于这些未解决的过程不能被忽略,因此必须以近似的方式将它们合并到模型中。这称为参数化。参数化对于建立大气-海洋系统的数值模型非常重要,因此是现代气象学和海洋学的主要研究方向之一。***我提出了一种用于开发物理参数化方案的新框架。关键范例是使用流体热力学原始控制方程的几何性质来制定参数化方案,在近似方程中保留这些性质。这将构成数值模型的基础。这些属性将包括对称性和守恒定律,它们是任何物理模型最重要的特征之一。几何保持参数化方案的构建将主要依靠微分方程组分析的方法。***虽然本研究计划的主要重点是开发可用于寻找几何保持参数化方案的数学技术,但我们还将通过为重要物理过程(包括湍流、海洋涡流和大气)构建几个闭合模型来说明这些技术。 对流。***该研究计划将为传统上必须在数值模型中参数化的各种过程提供构建物理和数学上一致的参数化方案所需的工具。这将为未来天气和气候模型的改进提供基础。由于对称性和守恒定律在物理学、工程学和数学科学中具有核心意义,因此预期的进展也将推动这些领域的发展。该研究项目还将在应用数学和计算数学的交叉领域培训几名本科生和研究生,从而为他们提供学习各种数学和技术技能的机会,这些技能对于在学术界和工业界取得优异成绩同样重要。 **
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bihlo, Alexander其他文献
Group classification of linear evolution equations
- DOI:
10.1016/j.jmaa.2016.11.020 - 发表时间:
2017-04-15 - 期刊:
- 影响因子:1.3
- 作者:
Bihlo, Alexander;Popovych, Roman O. - 通讯作者:
Popovych, Roman O.
Bihlo, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bihlo, Alexander', 18)}}的其他基金
Numerical Analysis and Scientific Computing
数值分析与科学计算
- 批准号:
CRC-2020-00002 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical Analysis And Scientific Computing
数值分析与科学计算
- 批准号:
CRC-2020-00002 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical analysis and scientific computing
数值分析和科学计算
- 批准号:
1000230772-2015 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Numerical Analysis and Scientific Computing
数值分析与科学计算
- 批准号:
1000233102-2019 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Numerical analysis and scientific computing
数值分析和科学计算
- 批准号:
1000230772-2015 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical analysis and scientific computing
数值分析和科学计算
- 批准号:
1000230772-2015 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
- 批准号:
2407231 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
What Works Policy Fellowship - Youth Futures Foundation Understanding What Makes for Quality Work Fellowship UKRI Policy Fellowship
什么有效的政策奖学金 - 青年未来基金会 了解什么是高质量工作奖学金 UKRI 政策奖学金
- 批准号:
ES/Y005007/1 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Fellowship
Aston University and Aston Villa Foundation KTP23_24R3
阿斯顿大学和阿斯顿维拉基金会 KTP23_24R3
- 批准号:
10084135 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Knowledge Transfer Network
Open Access Block Award 2024 - Kings College Hospital NHS Foundation Trust
2024 年开放访问区块奖 - 国王学院医院 NHS 基金会信托
- 批准号:
EP/Z532940/1 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Conference: A Virtual Workshop for Two-Year College Geoscience Faculty to Develop National Science Foundation Grant Proposals
会议:两年制大学地球科学教师制定国家科学基金会拨款提案的虚拟研讨会
- 批准号:
2349758 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
FMSG: Cyber: Learning Foundation Models for Manufacturing Design Automation
FMSG:网络:制造设计自动化的学习基础模型
- 批准号:
2328032 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
- 批准号:
2336079 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Northern Care Alliance NHS Foundation Trust KTP 23_24 R2
曼彻斯特城市大学和北方护理联盟 NHS 基金会信托 KTP 23_24 R2
- 批准号:
10076811 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Knowledge Transfer Partnership
Laying the Scientific and Engineering Foundation for Sustainable Cultivated Meat Production
为可持续养殖肉类生产奠定科学和工程基础
- 批准号:
2320899 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
- 批准号:
2321344 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant














{{item.name}}会员




