Leveraging System Behaviour Data to Improve the Process of Load Testing Large Scale Software Systems
利用系统行为数据改进大型软件系统的负载测试过程
基本信息
- 批准号:RGPIN-2014-06673
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many large scale software systems ranging from e-commerce websites (e.g., Amazon and Ebay) to telecommunication infrastructures (e.g., BlackBerry) must support concurrent access to thousands or millions of users. Studies show that many field problems of these systems are due to their inability to scale to meet user demands, rather than feature bugs. The inability to scale causes catastrophic failures and unfavorable media coverage (e.g., the botched launch of Apple's MobileMe). To ensure the quality of these systems, load testing is a required testing procedure in addition to conventional functional testing procedures (e.g., unit testing and integration testing). Load testing is gaining more importance, as an increasing number of services (e.g., Apple's iCloud and Google Drive) are being offered in the cloud to millions or even billions of users.**Load testing, in general, refers to the practice of assessing the system behavior under load. A typical load test uses one or more load generators that simultaneously send requests to the system under test. During the course of a load test, the system under test is monitored and gigabytes or terabytes of system behaviour data (e.g., performance counters and execution logs) is recorded. The system behaviour data, which is widely available in large scale systems to support problem diagnosis and remote issue resolution, contains rich information about the external environment (e.g., network latency or the rate of the requests) as well as the internal execution state of the system (e.g., request failures or the size of the request queues). However, due to the size and complexity of such data, load testing practitioners currently use it in a limited manner: mainly for ad-hoc high level manual checks (e.g., crash checks and memory leak checks). Little software testing research has been done to improve the load testing process with such valuable information. **The long term goal of this research is to leverage the rich information contained in the system behaviour data to improve the process of load testing large scale software systems. This proposed research aims to improve the theory and practices in all three phases of a load test: test design, test execution and test analysis. The following short term research objectives are proposed towards the long term goal: (1) Systematically Validating Load Test Suites (1 PhD student); (2) Adaptive Load Test Execution (2 Master's students); (3) In-depth and Scalable Load Test Analysis (2 PhD students). The expected research outcome will be useful for load testing practitioners and software engineering researchers with interest in monitoring, testing and analyzing large scale software systems.
许多大规模的软件系统,从电子商务网站(例如,亚马逊和Ebay)到电信基础设施(例如,BlackBerry)必须支持数千或数百万用户的并发访问。研究表明,这些系统的许多现场问题是由于它们无法扩展以满足用户需求,而不是功能缺陷。无法扩展导致灾难性的故障和不利的媒体报道(例如,苹果公司(Apple)的MobileMe发布失败)。为了确保这些系统的质量,除了传统的功能测试程序(例如,单元测试和集成测试)。随着越来越多的服务(例如,Apple的iCloud和Google Drive)正在云中提供给数百万甚至数十亿用户。负载测试通常是指评估系统在负载下的行为的实践。典型的负载测试使用一个或多个负载生成器,这些负载生成器同时向被测系统发送请求。在负载测试的过程中,被测系统被监控,并且千兆字节或太字节的系统行为数据(例如,性能计数器和执行日志)被记录。在大规模系统中广泛可用以支持问题诊断和远程问题解决的系统行为数据包含关于外部环境的丰富信息(例如,网络等待时间或请求速率)以及系统的内部执行状态(例如,请求失败或请求队列的大小)。然而,由于这种数据的大小和复杂性,负载测试从业者目前以有限的方式使用它:主要用于ad-hoc高级手动检查(例如,崩溃检查和内存泄漏检查)。很少有软件测试的研究已经做了这样的有价值的信息,以改善负载测试过程。** 本研究的长期目标是利用系统行为数据中包含的丰富信息来改进大型软件系统的负载测试过程。本研究旨在提高负载测试的三个阶段:测试设计、测试执行和测试分析的理论和实践。针对长期目标,提出了以下短期研究目标:(1)系统验证负载测试套件(1名博士生);(2)自适应负载测试执行(2名硕士生);(3)深入和可扩展的负载测试分析(2名博士生)。预期的研究成果将是有用的负载测试从业者和软件工程研究人员有兴趣在监测,测试和分析大型软件系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang, ZhenMing(Jack)其他文献
Jiang, ZhenMing(Jack)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang, ZhenMing(Jack)', 18)}}的其他基金
Improving the Software Logging Practices to Support the Decision-Making Process of DevOps Engineers
改进软件日志记录实践以支持 DevOps 工程师的决策过程
- 批准号:
RGPAS-2020-00084 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Improving the Software Logging Practices to Support the Decision-Making Process of DevOps Engineers
改进软件日志记录实践以支持 DevOps 工程师的决策过程
- 批准号:
RGPIN-2020-06122 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Improving the Software Logging Practices to Support the Decision-Making Process of DevOps Engineers
改进软件日志记录实践以支持 DevOps 工程师的决策过程
- 批准号:
RGPIN-2020-06122 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Improving the Software Logging Practices to Support the Decision-Making Process of DevOps Engineers
改进软件日志记录实践以支持 DevOps 工程师的决策过程
- 批准号:
RGPAS-2020-00084 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Improving the Software Logging Practices to Support the Decision-Making Process of DevOps Engineers
改进软件日志记录实践以支持 DevOps 工程师的决策过程
- 批准号:
RGPIN-2020-06122 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Improving the Software Logging Practices to Support the Decision-Making Process of DevOps Engineers
改进软件日志记录实践以支持 DevOps 工程师的决策过程
- 批准号:
RGPAS-2020-00084 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
基于铁死亡探讨黄芪甲苷调控System/Xc-/GSH/GPX4信号通路在神经损伤性勃起功能障碍治疗中的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
TBX1/LKB1轴阻断system Xc活性调控AML细胞铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
TET2通过调控BAP1-System Xc-轴促进紫拉非尼诱导的肝细胞癌铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
- 批准号:82372704
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于PNO1介导system Xc-/GSH途径调控肠上皮细胞自噬依赖性铁死亡探讨加味胶七散治疗溃疡性结肠炎的机制
- 批准号:82304982
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单细胞测序探讨淫羊藿苷对Erastin诱导髓核细胞铁死亡相关system-Xc/GSH/GPX4分子轴线的调控作用
- 批准号:82360947
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
内皮细胞机械敏感离子通道Piezo1通过HIF-1α/system Xc-介导BBB破坏在急性脑缺血再灌注损伤中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
miR-198 靶向 Nrf2 抑制 System Xc-通路调控滋养细胞铁死亡在子痫前期中的机制
- 批准号:2022JJ70123
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
BAP1介导H2B去泛素化抑制System Xc-在蛛网膜下腔出血神经元铁死亡中的作用和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/Y00390X/1 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Fellowship
Flocklight2.0: An automated lighting system for poultry behaviour management
Flowlight2.0:用于家禽行为管理的自动化照明系统
- 批准号:
10097623 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative R&D
Interaction between Party Strategy and Voting Behaviour - Changes in Postwar West European Party System
政党策略与投票行为的互动——战后西欧政党制度的变迁
- 批准号:
23KJ0677 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of two-component signaling system loss in behaviour of Shigella flexneri
双组分信号系统损失在福氏志贺氏菌行为中的作用
- 批准号:
574561-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
University Undergraduate Student Research Awards
OFI SF7 Use of mussel gaping behaviour as a toxin early warning system
OFI SF7 利用贻贝张开行为作为毒素预警系统
- 批准号:
576784-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Reasoning about System Behaviour through Neurosymbolic AI
通过神经符号人工智能推理系统行为
- 批准号:
2760033 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Role of the medial temporal lobe memory system in regulating behaviour
内侧颞叶记忆系统在调节行为中的作用
- 批准号:
RGPIN-2019-07276 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Describing spawning behaviour of Lake whitefish using a fine-scale telemetry system in Georgian Bay, ON
使用安大略省乔治亚湾的精细遥测系统描述湖白鲑的产卵行为
- 批准号:
575662-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Health System Shocks & Care Seeking Behaviour: How hasthe COVID-19 pandemic affected care seeking behaviour forpregnant women who belong to ethnic min
卫生系统的冲击
- 批准号:
2745688 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Studentship